Reference: Wang A, et al. (1997) Identification and characterization of human genes encoding Hprp3p and Hprp4p, interacting components of the spliceosome. Hum Mol Genet 6(12):2117-26

Reference Help

Abstract


Nuclear RNA splicing occurs in an RNA-protein complex, termed the spliceosome. U4/U6 snRNP is one of four essential small nuclear ribonucleoprotein (snRNP) particles (U1, U2, U5 and U4/U6) present in the spliceosome. U4/U6 snRNP contains two snRNAs (U4 and U6) and a number of proteins. We report here the identification and characterization of two human genes encoding U4/U6-associated splicing factors, Hprp3p and Hprp4p, respectively. Hprp3p is a 77 kDa protein, which is homologous to the Saccharomyces cerevisiae splicing factor Prp3p. Amino acid sequence analysis revealed two putative homologues in Caenorhabditis elegans and Schizosaccharomyces pombe. Polyclonal antibodies against Hprp3p were generated with His-tagged Hprp3p over-produced in Escherichia coli . This splicing factor can co-immunoprecipitate with U4, U6 and U5 snRNAs, suggesting that it is present in the U4/U6.U5 tri-snRNP. Hprp4p is a 58 kDa protein homologous to yeast splicing factor Prp4p. Like yeast Prp4p, the human homologue contains repeats homologous to the beta-subunit of G-proteins. These repeats are called WD repeats because there is a highly conserved dipeptide of tryptophan and aspartic acid present at the end of each repeat. The primary amino acid sequence homology between human Hprp4p and yeast Prp4p led to the discovery of two additional WD repeats in yeast Prp4p. Structural homology between these human and yeast splicing factors and the beta-subunit of G-proteins has been identified by sequence-similarity comparison and analysis of the protein folding by threading. Structural models of Hprp4p and Prp4p with a seven-blade beta-propeller topology have been generated based on the structure of beta-transducin. Hprp3p and Hprp4p have been shown to interact with each other and the first 100 amino acids of Hprp3p are not essential for this interaction. These experiments suggest that both Hprp3p and Hprp4p are components of human spliceosomes.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Wang A, Forman-Kay J, Luo Y, Luo M, Chow YH, Plumb J, Friesen JD, Tsui LC, Heng HH, Woolford JL, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference