Reference: Leng XH, et al. (1996) Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem 271(37):22487-93

Reference Help

Abstract


Vacuolar (H+)-ATPases (V-ATPases) are multisubunit complexes responsible for acidification of intracellular compartments in eukaryotic cells. V-ATPases possess a subunit of approximate molecular mass 100 kDa of unknown function that is composed of an amino-terminal hydrophilic domain and a carboxyl-terminal hydrophobic domain. To test whether the 100-kDa subunit plays a role in proton transport, site-directed mutagenesis of the VPH1 gene, which is one of two genes that encodes this subunit in yeast, has been carried out in a strain lacking both endogenous genes. Ten charged and twelve polar residues located in the seven putative transmembrane helices in the COOH-terminal domain of the molecule were individually changed, and the effects on proton transport, ATPase activity, and assembly of the yeast V-ATPase were measured. Two mutations (R735L and Q634L) in transmembrane helix 6 and at the border of transmembrane helix 5, respectively, showed greatly reduced levels of the 100-kDa subunit in the vacuolar membrane, suggesting that these mutations affected stability of the 100-kDa subunit. Two mutations, D425N and K538A, in transmembrane helix 1 and at the border of transmembrane helix 3, respectively, showed reduced assembly of the V-ATPase, with the D425N mutation also reducing the activity of V-ATPase complexes that did assemble. Two mutations, H743A and K593A, in transmembrane helix 6 and at the border of transmembrane helix 4, respectively, have significantly greater effects on activity than on assembly, with proton transport and ATPase activity inhibited 40-60%. One mutation, E789Q, in transmembrane helix 7, virtually completely abolished proton transport and ATPase activity while having no effect on assembly. These results suggest that the 100-kDa subunit may be required for activity as well as assembly of the V-ATPase complex and that several charged residues in the last four putative transmembrane helices of this subunit may play a role in proton transport.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Research Support, U.S. Gov't, P.H.S.
Authors
Leng XH, Manolson MF, Liu Q, Forgac M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference