Reference: Amberg DC, et al. (1992) Isolation and characterization of RAT1: an essential gene of Saccharomyces cerevisiae required for the efficient nucleocytoplasmic trafficking of mRNA. Genes Dev 6(7):1173-89

Reference Help

Abstract


We have combined techniques of genetics and histochemistry to identify genes required for the nucleocytoplasmic export of mRNA in the budding yeast Saccharomyces cerevisiae. We adapted in situ hybridization using a digoxigenin-labeled oligo(dT)50 probe to localize poly(A)+ RNA in fixed yeast cells and used yeast strains carrying the rna1-1 mutation to develop an assay. The rna1-1 mutation is the only previously described mutation that causes defects in mRNA export. As visualized with this RNA localization assay, rna1-1 strains accumulated poly(A)+ RNA at the nuclear periphery at the nonpermissive temperature. This was in contrast to the RNA localization pattern of wild-type cells or rna1-1 cells grown at permissive temperature. Wild-type cells showed bright uniform cytoplasmic staining with little detectable RNA in the nuclei. We used this RNA localization assay to screen a bank of temperature-sensitive yeast strains for mutants with inducible defects in mRNA trafficking. Strains identified in this manner are designated RAT mutants for ribonucleic acid trafficking. The rat1-1 allele conferred temperature-sensitive accumulation of poly(A)+ RNA in one to several intranuclear spots that appear to lie at the nuclear periphery. RNA processing was unaffected in rat1-1 strains, except for an inducible defect in trimming the 5' end of the 5.8S rRNA. The wild-type RAT1 gene was cloned by complementation; it encodes an essential 116-kD protein with regions of homology to the protein encoded by SEP1 (also known as DST2, XRN1, KEM1, and RAR5). Sep1p is a nucleic acid binding protein, a 5'----3' exonuclease, and catalyzes DNA strand transfer reactions in vitro. We discuss the possible significance of the Rat1p/Sep1p homology for RNA trafficking. We also discuss the potential of this RNA localization assay to identify genes involved in nuclear structure and RNA metabolism.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Amberg DC, Goldstein AL, Cole CN
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference