Reference: Gross DS, et al. (1990) Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J Mol Biol 216(3):611-31

Reference Help

Abstract


We describe here for the first time successful application of the hydroxyl radical technique for genomic footprinting. In combination with two complementary techniques, DNase I footprinting and dimethyl sulfate methylation protection, we have obtained a high-resolution map of the promoter region of the yeast HSP82 heat shock gene, which resides within a constitutive nuclease hypersensitive site. We find that irrespective of transcriptional state, basal or induced, only one of three putative heat shock elements, HSE1, and the TATA box are tightly bound by proteins, presumably heat shock factor (HSF) and TFIID, respectively. Whereas the HSE1-associated factor binds tightly within the major groove of DNA, as discerned by protection of guanine residues from methylation by dimethyl sulfate in intact cells, the TATA factor appears to bind principally to the sugar-phosphate backbone, as revealed by strong protection from hydroxyl radical cleavage in whole-cell lysates. In addition, while HSE1 is strongly footprinted by DNase I in lysates, the TATA box is only weakly footprinted. Strikingly, both elements are associated with marked distortion of the DNA double helix in chromatin. Protein binding to HSE1 appears to cause a non-B-conformation, on the basis of a local 12 base-pair periodicity of hydroxyl radical protection and the presence of multiple DNase I hyperreactive cleavages flanking HSE1, whose pattern changes following heat shock. Similarly, helix distortion is evident in the vicinity of the TATA box, since hydroxyl radical detects a lower strand-specific hypersensitive site at the dyad center of an adjacent polypurine tract. Finally, the absence of discernable modulation in the DNase I cleavage pattern argues against the presence of a specifically positioned nucleosome within the IISP82 promoter region.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gross DS, English KE, Collins KW, Lee SW
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference