Reference: Wasserman RA and Wang JC (1994) Analysis of yeast DNA topoisomerase II mutants resistant to the antitumor drug amsacrine. Cancer Res 54(7):1795-800

Reference Help

Abstract


Site-directed mutagenesis of regions within a plasmid-borne yeast TOP2 gene encoding DNA topoisomerase II and hydroxylamine mutagenesis of the entire plasmid were carried out, and the mutagenized plasmid DNA pools were used separately to transform yeast with a temperature-sensitive top2-4 mutation in the chromosomal TOP2 locus. By selecting transformants that grow in the presence of the antitumor drug amsacrine at 35 degrees C, a nonpermissive temperature for the top2-4 allele, plasmid-borne top2 mutants expressing amsacrine-resistant and physiologically functional DNA topoisomerase II were readily obtained. The causality between amsacrine resistance and the presence of these mutations in yeast DNA topoisomerase II has been firmly established, and this causality in turn shows that, in yeast at least, DNA topoisomerase II is the only significant cellular target of amsacrine. Three classes of such mutants have been identified: one involves single or multiple changes in a sequence PLRGK-MLN located at positions 474-481 of yeast DNA topoisomerase II, a highly conserved motif in all type II DNA topoisomerases; a second involving a single mutation changing Ala642 to threonine or glycine; and a third involving deletions of portions of the carboxy-terminal domain of the yeast enzyme. The nature of drug resistance of these different classes of mutants is discussed. The approaches used in this work should be readily applicable to yeast cells expressing heterologous DNA topoisomerases such as human DNA topoisomerase II alpha. Other DNA topoisomerase II-targeting drugs can also be studied in such a system.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Wasserman RA, Wang JC
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference