With photoactivation Rh(phen)2phi3+ promotes strand cleavage at sites of tertiary interaction in tRNA. The rhodium complex, which binds double-helical DNA by intercalation in the major groove, yields no cleavage in double-helical regions of the RNA or in unstructured single-stranded regions. Instead, Rh(phen)2phi3+ appears to target regions which are structured so that the major groove is open and accessible for stacking with the complex, as occurs where bases are triply bonded. So as to examine the specificity of this novel reagent and to evaluate its use in probing structural changes in RNAs, cleavage studies have been conducted on two structurally characterized tRNAs, tRNA(Phe) and tRNA(Asp) from yeast, the unmodified yeast tRNA(Phe) transcript, and a chemically modified tRNA(Phe), as well as on a series of tRNA(Phe) mutants. On tRNA(Phe) strong cleavage is observed at residues G22, G45, U47, psi 55, and U59; weaker cleavage is observed at A44, m7G46, and C48. On tRNA(Asp) cleavage is found at residues A21 through G26, psi 32, and U48, with minor cleavage apparent at A44, G45, A46, psi 55, U59, and U60. There is a striking similarity in cleavage observed on these tRNAs, and the sites of cleavage mark regions of tertiary folding. Cleavage on the unmodified tRNA(Phe) transcript resembles closely that found on native yeast tRNA(Phe), but additional sites, primarily in the anticodon loop and stem, are evident. The results indicate that globally the structures containing or lacking the modified bases appear to be the same; the differences in cleavage observed may reflect a loosening or alteration in the structure due to the absence of the modified bases. Cleavage results on mutants of tRNA(Phe) illustrate Rh(phen)2phi3+ as a sensitive probe in characterizing tRNA tertiary structure. Results are consistent with other assays for structural or functional changes. Uniquely, Rh(phen)2phi3+ appears to target directly sites of tertiary interaction. Cleavage results on mutants which involve base changes within the triply bounded region of the molecule indicate that it is the structure of the triply bonded array rather than the individual nucleotides which are being targeted. Chemical modification to promote selective depurination of the third base (m7G46) involved in the triple in the folded, native tRNA leads to the reduction of cleavage by the metal complex; this result shows directly the importance of the stacked triple base structure for recognition by the metal complex.(ABSTRACT TRUNCATED AT 400 WORDS)
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene/Complex | Systematic Name/Complex Accession | Qualifier | Gene Ontology Term ID | Gene Ontology Term | Aspect | Annotation Extension | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Phenotype | Experiment Type | Experiment Type Category | Mutant Information | Strain Background | Chemical | Details | Reference |
---|
Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Evidence ID | Analyze ID | Gene | Gene Systematic Name | Disease Ontology Term | Disease Ontology Term ID | Qualifier | Evidence | Method | Source | Assigned On | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.
Evidence ID | Analyze ID | Regulator | Regulator Systematic Name | Target | Target Systematic Name | Direction | Regulation of | Happens During | Regulator Type | Direction | Regulation Of | Happens During | Method | Evidence | Strain Background | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Site | Modification | Modifier | Source | Reference |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Allele | Assay | Annotation | Action | Phenotype | SGA score | P-value | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.
Evidence ID | Analyze ID | Interactor | Interactor Systematic Name | Interactor | Interactor Systematic Name | Assay | Annotation | Action | Modification | Source | Reference | Note |
---|
Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.
Complement ID | Locus ID | Gene | Species | Gene ID | Strain background | Direction | Details | Source | Reference |
---|
Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; download this table as a .txt file using the Download button;
Evidence ID | Analyze ID | Dataset | Description | Keywords | Number of Conditions | Reference |
---|