Reference: Stray JE and Lindsley JE (2003) Biochemical analysis of the yeast condensin Smc2/4 complex: an ATPase that promotes knotting of circular DNA. J Biol Chem 278(28):26238-48

Reference Help

Abstract


To better understand the contributions that the structural maintenance of chromosome proteins (SMCs) make to condensin activity, we have tested a number of biochemical, biophysical, and DNA-associated attributes of the Smc2p-Smc4p pair from budding yeast. Smc2p and Smc4p form a stable heterodimer, the "Smc2/4 complex," which upon analysis by sedimentation equilibrium appears to reversibly self-associate to form heterotetramers. Individually, neither Smc2p nor Smc4p hydrolyzes ATP; however, ATPase activity is recovered by equal molar mixing of both purified proteins. Hydrolysis activity is unaffected by the presence of DNA. Smc2/4 binds both linearized and circular plasmids, and the binding appears to be independent of adenylate nucleotide. High mole ratios of Smc2/4 to plasmid promote a geometric change in circular DNA that can be trapped as knots by type II topoisomerases but not as supercoils by a type I topoisomerase. Binding titration analyses reveal that two Smc2/4-DNA-bound states exist, one disrupted by and one resistant to salt challenge. Competition-displacement experiments show that Smc2/4-DNA-bound species formed at even high protein to DNA mole ratios remain reversible. Surprisingly, only linear and supercoiled DNA, not nicked-circular DNA, can completely displace Smc2/4 prebound to a labeled, nicked-circular DNA. To explain this geometry-dependent competition, we present two models of DNA binding by SMCs in which two DNA duplexes are captured within the inter-coil space of an Smc2/4 heterodimer. Based on these models, we propose a DNA displacement mechanism to explain how differences in geometry could affect the competitive potential of DNA.

Reference Type
Journal Article | Research Support, U.S. Gov't, P.H.S.
Authors
Stray JE, Lindsley JE
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference