Reference: Malecki M, et al. (2008) In vivo and in vitro approaches for studying the yeast mitochondrial RNA degradosome complex. Methods Enzymol 447:463-88

Reference Help

Abstract


The mitochondrial degradosome (mtEXO) of S. cerevisiae is the main exoribonuclease of yeast mitochondria. It is involved in many pathways of mitochondrial RNA metabolism, including RNA degradation, surveillance, and processing, and its activity is essential for mitochondrial gene function. The mitochondrial degradosome is a very simple example of a 3' to 5'-exoribonucleolytic complex. It is composed of only two subunits: Dss1p, which is an RNR (RNase II-like) family exoribonuclease, and Suv3p, which is a DExH/D-box RNA helicase. The two subunits form a tight complex and their activities are highly interdependent, with the RNase activity greatly enhanced in the presence of the helicase subunit, and the helicase activity entirely dependent on the presence of the ribonuclease subunit. In this chapter, we present methods for studying the function of the yeast mitochondrial degradosome in vivo, through the analysis of degradosome-deficient mutant yeast strains, and in vitro, through heterologous expression in E. coli and purification of the degradosome subunits and reconstitution of a functional complex. We provide the protocols for studying ribonuclease, ATPase, and helicase activities and for measuring the RNA binding capacity of the complex and its subunits.

Reference Type
Journal Article | Research Support, N.I.H., Intramural | Research Support, Non-U.S. Gov't
Authors
Malecki M, Jedrzejczak R, Puchta O, Stepien PP, Golik P
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference