Reference: Titus LC, et al. (2010) Members of the RSC chromatin-remodeling complex are required for maintaining proper nuclear envelope structure and pore complex localization. Mol Biol Cell 21(6):1072-87

Reference Help

Abstract


The assembly, distribution, and functional integrity of nuclear pore complexes (NPCs) in the nuclear envelope (NE) are key determinants in the nuclear periphery architecture. However, the mechanisms controlling proper NPC and NE structure are not fully defined. We used two different genetic screening approaches to identify Saccharomyces cerevisiae mutants with defects in NPC localization. The first approach examined green fluorescent protein (GFP)-Nic96 in 531 strains from the yeast Tet-promoters Hughes Collection with individual essential genes expressed from a doxycycline-regulated promoter (TetO(7)-orf). Under repressive conditions, depletion of the protein encoded by 44 TetO(7)-orf strains resulted in mislocalized GFP-Nic96. These included STH1, RSC4, RSC8, RSC9, RSC58, ARP7, and ARP9, each encoding components of the RSC chromatin remodeling complex. Second, a temperature-sensitive sth1-F793S (npa18-1) mutant was identified in an independent genetic screen for NPC assembly (npa) mutants. NPC mislocalization in the RSC mutants required new protein synthesis and ongoing transcription, confirming that lack of global transcription did not underlie the phenotypes. Electron microscopy studies showed significantly altered NEs and nuclear morphology, with coincident cytoplasmic membrane sheet accumulation. Strikingly, increasing membrane fluidity with benzyl alcohol treatment prevented the sth1-F793S NE structural defects and NPC mislocalization. We speculate that NE structure is functionally linked to proper chromatin architecture.

Reference Type
Journal Article | Research Support, N.I.H., Extramural
Authors
Titus LC, Dawson TR, Rexer DJ, Ryan KJ, Wente SR
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference