Reference: McCullough SD and Grant PA (2010) Histone acetylation, acetyltransferases, and ataxia--alteration of histone acetylation and chromatin dynamics is implicated in the pathogenesis of polyglutamine-expansion disorders. Adv Protein Chem Struct Biol 79:165-203

Reference Help

Abstract


Eukaryotic chromosomal DNA is packaged into nucleosomes to form a dynamic structure known as chromatin. The compaction of DNA within chromatin poses a unique hindrance with regards to the accessibility of the DNA to enzymes involved in replication, transcriptional regulation, and repair. The physical structure and physiological activity of chromatin are regulated through a diverse set of posttranslational modifications, histone exchange, and structural remodeling. Of the covalent chromatin modifications, the acetylation of lysine residues within histone proteins by acetyltransferase enzymes, such as GCN5, is one of the most prevalent and important steps in the regulation of chromatin function. Alteration of histone acetyltransferase activity can easily result in the dysregulation of gene transcription and ultimately the onset of a disease state. Many transcription factors contain polyglutamine regions within their primary sequence. Mutations resulting in the elongation of these polyglutamine tracts are associated with a disease family known as the polyglutamine expansion disorders. Spinocerebellar ataxia type 7 (SCA7) is one of the nine diseases that are grouped in this family and is caused by polyglutamine expansion of the ataxin-7 protein, which is a component of the GCN5-containing human SAGA histone acetyltransferase complex. Mutation of ataxin-7 in this manner has been shown to disrupt the structural integrity of the SAGA complex and result in aberrant chromatin acetylation patterns at the promoters of genes involved in the normal function of tissues that are affected by the disease. The specific aspects of molecular pathology are not currently understood; however, studies carried out in laboratory systems ranging from the budding yeast Saccharomyces cerevisiae to transgenic mouse models and cultured human cells are poised to allow for the elucidation of disease mechanisms and subsequent therapeutic approaches.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Review
Authors
McCullough SD, Grant PA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference