Reference: Albaugh BN, et al. (2010) Kinetic mechanism of the Rtt109-Vps75 histone acetyltransferase-chaperone complex. Biochemistry 49(30):6375-85

Reference Help

Abstract


Rtt109 is a histone acetyltransferase (HAT) involved in promoting genomic stability, DNA repair, and transcriptional regulation. Rtt109 associates with the NAP1 family histone chaperone Vps75 and stimulates histone acetylation. Here we explore the mechanism of histone acetylation and report a detailed kinetic investigation of the Rtt109-Vps75 complex. Rtt109 and Vps75 form a stable complex with nanomolar binding affinity (K(d) = 10 +/- 2 nM). Steady-state kinetic analysis reveals evidence of a sequential kinetic mechanism whereby the Rtt109-Vps75 complex, AcCoA, and histone H3 substrates form a complex prior to chemical catalysis. Product inhibition studies demonstrate that CoA binds competitively with AcCoA, and equilibrium measurements reveal AcCoA or CoA binding is not stimulated in the presence of H3 substrate. Additionally, the Rtt109-Vps75 complex binds H3 substrates in the absence AcCoA. Pre-steady-state kinetic analysis suggests the chemical attack of substrate lysine on the bound AcCoA is the rate-limiting step of catalysis, while the pH profile of k(cat) reveals a critical ionization with a pK(a) of 8.5 that must be unprotonated for catalysis. Amino acid substitution at D287 and D288 did not substantially change the shape of the k(cat)-pH profile, suggesting these conserved residues do not function as base catalysts for histone acetylation. However, the D288N mutant revealed a dramatic 1000-fold decrease in k(cat)/K(m) for AcCoA, consistent with a role in AcCoA binding. Together, these data support a sequential mechanism in which AcCoA and H3 bind to the Rtt109-Vps75 complex without obligate order, followed by the direct attack of the unprotonated epsilon-amino group on AcCoA, transferring the acetyl group to H3 lysine residues.

Reference Type
Journal Article | Research Support, N.I.H., Extramural | Research Support, Non-U.S. Gov't
Authors
Albaugh BN, Kolonko EM, Denu JM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference