Reference: Kuthan H (2005) Temporal fluctuation of nuclear pore complex localization by single diffusing mRNP complexes. J Theor Biol 236(3):256-62

Reference Help

Abstract


There is now compelling evidence that messenger ribonucleoprotein (mRNP) complexes after the release from the transcription/processing sites execute essentially unhindered Brownian movements in the nucleoplasm and target nuclear pore complexes (NPCs) by chance encounter. For the majority of genes expressed in eukaryotic cells, only single/few transcript copies are generated, which reinforces the stochastic nature of NPC localization. In this paper, I analyse the NPC localization by freely diffusing single mRNPs and discuss the implications for the temporal progression of gene expression and consecutive processes associated with the gene products. To this end, a walk-and-capture model is considered, assuming a spherical nuclear compartment with a partially absorbing boundary. Perfect absorption and perfect reflection mark the extreme outcomes. For this model, the closed-form analytic solution of the first-passage time probability density function (FPT p.d.f.), the mean passage time and variance have been obtained. The FPT p.d.f. enables to calculate the probability that single mRNPs localize the nuclear boundary and dock to NPCs within certain time windows. For freely moving mRNP complexes in osteosarcoma cell nuclei, a mean apparent diffusion coefficient (D) of 0.04 microm2 s(-1) (range 0.01-0.09 microm2 s(-1)) has been reported. Assuming a nuclear radius of 8 microm and D=0.04 microm2 s(-1), the position-averaged minimum mean passage time min for the considered model is 1.8 min, which presupposes perfect absorption of the mRNP complex at the first encounter with the nuclear boundary. In this case, the probability of capture in the time interval (0, min) is 0.67. In smaller sized yeast cell nuclei with a radius of 0.8 mum and D=0.04 microm2 s(-1), single diffusing mRNPs would localize an NPC within tens of seconds, rather than minutes.

Reference Type
Journal Article
Authors
Kuthan H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference