Reference: Renvoisé M, et al. (2014) Quantitative variations of the mitochondrial proteome and phosphoproteome during fermentative and respiratory growth in Saccharomyces cerevisiae. J Proteomics 106:140-50

Reference Help

Abstract


Unlabelled: The yeast Saccharomyces cerevisiae is a facultative aerobe able to adapt its metabolism according to the carbon substrate. The mechanisms of these adaptations involve at least partly the mitochondria but are not yet well understood. To address the possible role of protein phosphorylation event in their regulation, it is necessary in a first instance to determine precisely the phosphorylation sites that show changes depending on the carbon source. In this aim we performed an overall quantitative proteomic and phosphoproteomic study of isolated mitochondria extracted from yeast grown on fermentative (glucose or galactose) and respiratory (lactate) media. Label free quantitative analysis of protein accumulation revealed significant variation of 176 mitochondrial proteins including 108 proteins less accumulated in glucose medium than in lactate and galactose media. We also showed that the responses to galactose and glucose are not similar. Stable isotope dimethyl labeling allowed the quantitative comparison of phosphorylation levels between the different growth conditions. This study enlarges significantly the map of yeast mitochondrial phosphosites as 670 phosphorylation sites were identified, of which 214 were new and quantified. Above all, we showed that 90 phosphosites displayed a significant variation according to the medium and that variation of phosphorylation level is site-dependent.

Biological significance: This proteomic and phosphoproteomic study is the first extensive study providing quantitative data on phosphosites responses to different carbon substrates independent of the variations of protein quantities in the yeast S. cerevisiae mitochondria. The significant changes observed in the level of phosphorylation according to the carbon substrate open the way to the study of the regulation of mitochondrial proteins by phosphorylation in fermentative and respiratory media. In addition, the identification of a large number of new phosphorylation sites show that the characterization of mitochondrial phosphoproteome is not yet completed.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Renvoisé M, Bonhomme L, Davanture M, Valot B, Zivy M, Lemaire C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference