Reference: Gaupel AC, et al. (2014) High throughput screening identifies modulators of histone deacetylase inhibitors. BMC Genomics 15(1):528

Reference Help

Abstract


Background: Previous studies from our laboratory and others have demonstrated that in addition to altering chromatin acetylation and conformation, histone deacetylase inhibitors (HDACi) disrupt the acetylation status of numerous transcription factors and other proteins. A whole genome yeast deletion library screen was used to identify components of the transcriptional apparatus that modulate the sensitivity to the hydroxamic acid-based HDACi, CG-1521.

Results: Screening 4852 haploid Saccharomyces cerevisiae deletion strains for sensitivity to CG-1521 identifies 407 sensitive and 80 resistant strains. Gene ontology (GO) enrichment analysis shows that strains sensitive to CG-1521 are highly enriched in processes regulating chromatin remodeling and transcription as well as other ontologies, including vacuolar acidification and vesicle-mediated transport. CG-1521-resistant strains include those deficient in the regulation of transcription and tRNA modification. Components of the SAGA histone acetyltransferase (HAT) complex are overrepresented in the sensitive strains, including the catalytic subunit, Gcn5. Cell cycle analysis indicates that both the wild-type and gcn5Δ strains show a G1 delay after CG-1521 treatment, however the gcn5Δ strain displays increased sensitivity to CG-1521-induced cell death compared to the wild-type strain. To test whether the enzymatic activity of Gcn5 is necessary in the response to CG-1521, growth assays with a yeast strain expressing a catalytically inactive variant of the Gcn5 protein were performed and the results show that this strain is less sensitive to CG-1521 than the gcn5Δ strain.

Conclusion: Genome-wide deletion mutant screening identifies biological processes that affect the sensitivity to the HDAC inhibitor CG-1521, including transcription and chromatin remodeling. This study illuminates the pathways involved in the response to CG-1521 in yeast and provides incentives to understand the mechanisms of HDAC inhibitors in cancer cells. The data presented here demonstrate that components of the SAGA complex are involved in mediating the response to CG-1521. Additional experiments suggest that functions other than the acetyltransferase activity of Gcn5 may be sufficient to attenuate the effects of CG-1521 on cell growth.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Gaupel AC, Begley T, Tenniswood M
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference