Reference: Cordente AG, et al. (2019) Inactivating Mutations in Irc7p Are Common in Wine Yeasts, Attenuating Carbon-Sulfur β-Lyase Activity and Volatile Sulfur Compound Production. Appl Environ Microbiol 85(6)

Reference Help

Abstract


During alcoholic fermentation of grape sugars, wine yeasts produce a range of secondary metabolites that play an important role in the aroma profile of wines. In this study, we have explored the ability of a large number of wine yeast strains to modulate wine aroma composition, focusing on the release of the "fruity" thiols 3-mercaptohexan-1-ol (3-MH) and 4-mercapto-4-methylpentan-2-one (4-MMP) from their respective cysteinylated nonvolatile precursors. The role of the yeast gene IRC7 in thiol release has been well established, and it has been shown that a 38-bp deletion found in many wine strains cause them to express a truncated version of Irc7p that does not possess cysteine-S-conjugate β-lyase activity. In our data, we find that IRC7 allele length alone does not fully explain the capacity of a strain to release thiols. Screening of a large number of strains coupled with analysis of genomic sequence data allowed us to identify several previously undescribed single-nucleotide polymorphisms (SNPs) in IRC7 that, when coupled with allele length, more robustly explain the ability of a particular yeast strain to release thiols from their cysteinylated precursors. We also demonstrate that allelic variation of IRC7 not only affects the release of thiols but modulates the formation of negative volatile sulfur compounds from the amino acid cysteine. The results of this study provide winemakers with an improved understanding of the genetic determinants that affect wine aroma and flavor, which can be used to guide the choice of yeast strains that are fit for purpose.IMPORTANCE Volatile sulfur compounds contribute to wine aromas that may be considered pleasant, such as "tropical," "passionfruit," and "guava," as well as aromas that are considered undesirable, such as "rotten eggs," "onions," and "sewer." During fermentation, wine yeasts release some of these compounds from odorless precursor molecules, a process that is most efficient when performed by yeasts that express active forms of the protein Irc7p. We show that most wine yeasts carry mutations that reduce activity of this protein, affecting the formation of volatile sulfur compounds that impart both pleasant and unpleasant aromas. The results provide winemakers with guidance on the choice of yeasts that can emphasize or deemphasize this particular contribution to wine quality.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Cordente AG, Borneman AR, Bartel C, Capone D, Solomon M, Roach M, Curtin CD
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference