Reference: Faris R and Weber MM (2019) Identification of Host Pathways Targeted by Bacterial Effector Proteins using Yeast Toxicity and Suppressor Screens. J Vis Exp

Reference Help

Abstract


Intracellular bacteria secrete virulence factors called effector proteins into the host cytosol that act to subvert host proteins and/or their associated biological pathways to the benefit of the bacterium. Identification of putative bacterial effector proteins has become more manageable due to advances in bacterial genome sequencing and the advent of algorithms that allow in silico identification of genes encoding secretion candidates and/or eukaryotic-like domains. However, identification of these important virulence factors is only an initial step. Naturally, the goal is to determine the molecular function of effector proteins and elucidate how they interact with the host. In recent years, techniques like the yeast two-hybrid screen and large-scale immunoprecipitations coupled with mass spectrometry have aided in the identification of protein-protein interactions. Although identification of a host binding partner is the crucial first step toward elucidating the molecular function of a bacterial effector protein, sometimes the host protein is found to have multiple biological functions (e.g., actin, clathrin, tubulin), or the bacterial protein may not physically bind host proteins, depriving the researcher of crucial information about the precise host pathway being manipulated. A modified yeast toxicity screen coupled with a suppressor screen has been adapted to identify host pathways impacted by bacterial effector proteins. The toxicity screen relies on a toxic effect in yeast caused by the effector protein interfering with the host biological pathways, which often manifests as a growth defect. Expression of a yeast genomic library is used to identify host factors that suppress the toxicity of the bacterial effector protein and thus identify proteins in the pathway that the effector protein targets. This protocol contains detailed instructions for both the toxicity and suppressor screens. These techniques can be performed in any lab capable of molecular cloning and cultivation of yeast and Escherichia coli.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't | Video-Audio Media
Authors
Faris R, Weber MM
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference