Reference: Jiang G, et al. (2021) Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases. ACS Synth Biol 10(12):3353-3358

Reference Help

Abstract


CRISPR-mediated base editing causes damage to DNA, mainly uracil, apurinic/apyrimidinic (AP) sites, and nicks, which require various DNA repair mechanisms to complete the base conversion process. Currently, there are only hypotheses explaining the base editing process, but the molecular mechanism and roles of the repair systems in the process are relatively unknown. To explore the mechanism of base editing repair, a base editor, nCas9-PmCDA1, was applied in the model eukaryote, Saccharomyces cerevisiae, either with the wild type or its derivatives with genes encoding translesion DNA synthesis (TLS) polymerases knocked out. We found that C-to-G and C-to-A conversions resulted mainly from the repair of AP sites created by Ung and required Polζ as an extender. Rev1 is the main TLS polymerase for specifically incorporating Cs on the opposite position of AP sites to cause the dominant C-to-G conversion, while Polδ incorporates Ts or As on the opposite of AP sites, resulting in C-to-A and C-to-T conversions. Polη is not involved in the repair of AP sites caused by the base editor. Furthermore, our data suggested that the indels of base editing are mainly caused by the breakage of AP sites. Different from the current hypothesis model of the base editing mechanism, this work first elucidates the key roles of TLS polymerases in the cytosine base editing process. This work also suggests a new direction for the development of genomic and base editing techniques by employing, manipulating, and engineering TLS polymerases.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Jiang G, Wang J, Zhao D, Chen X, Pu S, Zhang C, Li J, Li Y, Yang J, Li S, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference