Reference: Xie C, et al. (2021) Early Secretory Pathway-Associated Proteins SsEmp24 and SsErv25 Are Involved in Morphogenesis and Pathogenicity in a Filamentous Phytopathogenic Fungus. mBio 12(6):e0317321

Reference Help

Abstract


Proper protein secretion is critical for fungal development and pathogenesis. However, the potential roles of proteins involved in the early secretory pathway are largely undescribed in filamentous fungi. p24 proteins are cargo receptors that cycle between the endoplasmic reticulum (ER) and Golgi apparatus in the early secretory pathway and recruit cargo proteins to nascent vesicles. This study characterized the function of two p24 family proteins (SsEmp24 and SsErv25) in a phytopathogenic fungus, Sclerotinia sclerotiorum. Both SsEmp24 and SsErv25 were upregulated during the early stages of S. sclerotiorum infection. ΔSsEmp24 mutant and ΔSsErv25 mutant displayed abnormal vegetative growth and sclerotium formation, were defective in infection cushion formation, and showed lower virulence on host plants. ΔSsEmp24 mutant had a more severe abnormal phenotype than ΔSsErv25 mutant, implying that SsEmp24 could play a central role in the early secretory pathway. Similar to their Saccharomyces cerevisiae counterparts, SsEmp24 interacted with SsErv25 and predominantly colocalized in the ER or nuclear envelope. The absence of SsEmp24 or SsErv25 led to defective in protein secretion in S. sclerotiorum, including the pathogenicity-related extracellular hydrolytic enzymes and effectors. It is proposed that SsEmp24 and SsErv25, components in the early secretory pathway, are involved in modulating morphogenesis and pathogenicity in S. sclerotiorum by mediating protein secretion. IMPORTANCE Understanding the reproduction and pathogenesis mechanism of phytopathogens could provide new opinions to effectively control fungal diseases. Although it has been known that effectors and extracellular hydrolytic enzymes secreted by phytopathogenic fungi play important roles in fungus-host interactions, the secretion system for the delivery of virulence factors to the host is still largely undescribed. Although the role of the early secretory pathway-associated p24 proteins in S. cerevisiae has been well characterized, the function of these proteins in filamentous fungi was scarcely known prior to this study. The present research provides evidence that p24 proteins participate in the reproduction and pathogenesis of phytopathogenic fungi through the mediation of protein secretion. This research advances our understanding of p24 proteins in filamentous phytopathogenic fungi. In addition, the candidate cargos of the two p24 proteins, SsEmp24 and SsErv25, were screened out by comparative proteomics, which could aid the identification of novel development and virulence-associated factors in phytopathogenic fungi.

Reference Type
Journal Article | Research Support, Non-U.S. Gov't
Authors
Xie C, Shang Q, Mo C, Xiao Y, Wang G, Xie J, Jiang D, Xiao X
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference