Reference: Albihlal WS, et al. (2024) Budding yeast as an ideal model for elucidating the role of N6-methyladenosine in regulating gene expression. Yeast 41(4):148-157

Reference Help

Abstract


N6-methyladenosine (m6A) is a highly abundant and evolutionarily conserved messenger RNA (mRNA) modification. This modification is installed on RRACH motifs on mRNAs by a hetero-multimeric holoenzyme known as m6A methyltransferase complex (MTC). The m6A mark is then recognised by a group of conserved proteins known as the YTH domain family proteins which guide the mRNA for subsequent downstream processes that determine its fate. In yeast, m6A is installed on thousands of mRNAs during early meiosis by a conserved MTC and the m6A-modified mRNAs are read by the YTH domain-containing protein Mrb1/Pho92. In this review, we aim to delve into the recent advances in our understanding of the regulation and roles of m6A in yeast meiosis. We will discuss the potential functions of m6A in mRNA translation and decay, unravelling their significance in regulating gene expression. We propose that yeast serves as an exceptional model organism for the study of fundamental molecular mechanisms related to the function and regulation of m6A-modified mRNAs. The insights gained from yeast research not only expand our knowledge of mRNA modifications and their molecular roles but also offer valuable insights into the broader landscape of eukaryotic posttranscriptional regulation of gene expression.

Reference Type
Journal Article | Review
Authors
Albihlal WS, Chan WY, van Werven FJ
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference