Reference: Cleaver A, et al. (2024) High-throughput optimisation of protein secretion in yeast via an engineered biosensor. Trends Biotechnol.

Reference Help

Abstract


Secretion of high-value proteins and enzymes is fundamental to the synthetic biology economy, allowing continuous fermentation during production and protein purification without cell lysis. Most eukaryotic protein secretion is encoded by an N-terminal signal peptide (SP); however, the strong impact of SP sequence variation on the secretion efficiency of a given protein is not well defined. Despite high natural SP sequence diversity, most recombinant protein secretion systems use only a few well-characterised SPs. Additionally, the selection of promoters and terminators can significantly affect secretion efficiency, yet screening numerous genetic constructs for optimal sequences remains inefficient. Here, we adapted a yeast G-protein-coupled receptor (GPCR) biosensor, to measure the concentration of a peptide tag that is co-secreted with any protein of interest (POI). Thus, protein secretion efficiency can be quantified via induction of a fluorescent reporter that is upregulated downstream of receptor activation. This enabled high-throughput screening of over 6000 combinations of promoters, SPs, and terminators, assembled using one-pot Combinatorial Golden Gate cloning. We demonstrate this biosensor can quickly identify best combinations for secretion and quantify secretion levels. Our results highlight the importance of SP optimisation as an initial step in designing heterologous protein expression strategies, demonstrating the value of high-throughput screening (HTS) approaches for maximising secretion efficiency.

Reference Type
Journal Article
Authors
Cleaver A, Luo R, Smith OB, Murphy L, Schwessinger B, Brock J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference