Reference: Huffines AK and Schneider DA (2025) Differential impact of divalent metals on native elongating transcript sequencing (NET-seq) protocols for RNA polymerases I and II. PLoS One 20(2):e0315595

Reference Help

Abstract


Throughout all domains of life, RNA polymerases (Pols) synthesize RNA from DNA templates, a process called transcription. During transcription, Pols require divalent metal cations for nucleotide addition and cleavage of the nascent RNA after misincorporation or polymerase stalling. Recently, several next-generation sequencing techniques have emerged to study transcription at single-nucleotide resolution in vivo. One such technique, native elongating transcript sequencing (NET-seq), allows for isolation of transcription elongation complexes associated with a specific Pol, defining polymerase occupancy on the DNA template. Originally developed to study RNA polymerase II (Pol II), NET-seq has been adapted for RNA polymerase I (Pol I) and bacterial RNA polymerase. We recently optimized Pol I NET-seq in Saccharomyces cerevisiae, however, we omitted nucleases and their metal cofactors, which are commonly used in Pol II NET-seq. Here, we investigated the effect of CaCl2 ± MNase and MnCl2 ± DNase I on Pol I occupancy. We found that exposure of Pol I to CaCl2 and MnCl2 during NET-seq caused a significant reduction in immunoprecipitation of nascent rRNA compared to the untreated control samples, with a more severe effect when incubated with MnCl2 vs. CaCl2. Surprisingly, in contrast to the Pol I results, we found that metal treatment during Pol II NET-seq did not have a significant effect on nascent transcript capture. Taken together, these observations reinforce the conclusion that transcription elongation complexes formed by Pols I and II have unique characteristics and emphasize the need to carefully consider experimental conditions deployed in all stages of nucleic acid library generation.

Reference Type
Journal Article
Authors
Huffines AK, Schneider DA
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference