Reference: Fryer T, et al. (2025) Post-assembly Plasmid Amplification for Increased Transformation Yields in E. coli and S. cerevisiae. Chem Bio Eng 2(2):87-96

Reference Help

Abstract


Many biological disciplines rely upon the transformation of host cells with heterologous DNA to edit, engineer, or examine biological phenotypes. Transformation of model cell strains (Escherichia coli) under model conditions (electroporation of circular supercoiled plasmid DNA; typically pUC19) can achieve >1010 transformants/μg DNA. Yet outside of these conditions, e.g., work with relaxed plasmid DNA from in vitro assembly reactions (cloned DNA) or nonmodel organisms, the efficiency of transformation can drop by multiple orders of magnitude. Overcoming these inefficiencies requires cost- and time-intensive processes, such as generating large quantities of appropriately formatted input DNA or transforming many aliquots of cells in parallel. We sought to simplify the generation of large quantities of appropriately formatted input cloned DNA by using rolling circle amplification (RCA) and treatment with specific endonucleases to generate an efficiently transformable linear DNA product for in vivo circularization in host cells. We achieved an over 6500-fold increase in the yield of input DNA, and demonstrate that the use of a nicking endonuclease to generate homologous single-stranded ends increases the efficiency of E. coli chemical transformation compared to both linear DNA with double-stranded homologous ends and circular Golden-Gate assembly products. Meanwhile, the use of a restriction endonuclease to generate linear DNA with double-stranded homologous ends increases the efficiency of chemical and electrotransformation of Saccharomyces cerevisiae. Importantly, we also optimized the process such that both RCA and endonuclease treatment occur efficiently in the same buffer, streamlining the workflow and reducing product loss through purification steps. We expect that our approach could have utility beyond E. coli and S. cerevisiae and be applicable to areas such as directed evolution, genome engineering, and the manipulation of alternative organisms with even poorer transformation efficiencies.

Reference Type
Journal Article
Authors
Fryer T, Wolff DS, Overath MD, Schäfer E, Laustsen AH, Jenkins TP, Andersen C
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference