Reference: Li C, et al. (2025) Quantification and Molecular Analysis of Antagonism between Xylose Utilization and Acetic Acid Tolerance in Glucose/Xylose Cofermentation Saccharomyces cerevisiae Strains. J Agric Food Chem 73(11):6758-6771

Reference Help

Abstract


For bioethanol production from lignocellulosic materials, an ideal microorganism must possess both excellent xylose utilization and a high tolerance to inhibitory compounds. However, these two traits often exhibit antagonism in recombinant xylose-utilizing Saccharomyces cerevisiae strains. In this study, we developed a quantitative metric using an aggregated parameter to evaluate the degree of this antagonism and applied it to evaluate the antagonism of three strains (LF1, LF1-6M, and 6M-15), which had been iteratively evolved in xylose and hydrolyzate environments. Transcriptomic analysis revealed that the yeast strain elevates the alert level to stresses related to DNA replication, unfolded protein, starvation, and hyperosmosis, and reduces the uptake of unimportant nutrients to have a higher acetic acid tolerance during adaptive evolution in hydrolyzate. Additionally, the Snf1p-Mig1p signaling pathway was reprogrammed, enabling the strain to utilize xylose more efficiently during adaptive evolution in xylose. We also confirmed that disruption of the glyceraldehyde-3-phosphate dehydrogenase gene TDH1 significantly shortened the time required for glucose and/or xylose cofermentation under acetic acid stress by reducing reactive oxygen species accumulation and increasing ATP production. This study offers valuable insights for developing robust and efficient S. cerevisiae strains capable of glucose/xylose cofermentation.

Reference Type
Journal Article
Authors
Li C, Yu H, Chen S, Song L, Yuan A, Wei F, Sun D, Wang M, Xu L, He D, ... Show all
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference