Reference: King CY (2025) Total propagation of yeast prion conformers in ssz1∆ upf1∆ Hsp104T160M triple mutants. Curr Genet 71(1):8

Reference Help

Abstract


It was reported that yeast proteins Ssz1 and Upf1 can cure certain [PSI+] variants in wild-type cells and there is a special class of variants whose propagation requires the triple mutation of ssz1∆ upf1∆ Hsp104T160M. Attempts to isolate variants with the exact properties from the 74-D694 strain (and tested there) are not yet successful. The effort nevertheless leads to an alternative analysis about how ssz1∆ and upf1∆ mutations can help prion propagation. The cellular propagation of the yeast prion [PSI+] requires appropriate activities of the Hsp104 disaggregase. Many [PSI+] variants isolated in wild-type strains cannot propagate in cells expressing Hsp104T160M, which has weaker activities. Yet another group of [PSI+] variants shows the opposite, propagating well with Hsp104T160M but is eliminated by the wild-type protein. Deletion of SSZ1 and UPF1 genes in Hsp104T160M cells generates a just-right environment that supports the propagation of both types of [PSI+] variants. The pro-prion effect is not due to the removal of active curing by Ssz1 or Upf1-such curing activity is not observed for the variants. Rather, the double deletion causes a cellular response, which enables more efficient fragmentation of prion fibers, thus remedying the weak activity of Hsp104T160M. The "Goldilocks" conditioning seems also applicable to other yeast prions. Two [PIN+] variants that propagate well with wild-type Hsp104 but poorly with Hsp104∆N, lacking residues (2-147), can however thrive with the latter if Ssz1 and Upf1 are also deleted from the cell. In this case, the double deletion results in higher Hsp104∆N expression, leading to improved generation of prion seeds for robust propagation.

Reference Type
Journal Article
Authors
King CY
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference