Reference: Kikuta H, et al. (2025) Genome-wide screening reveals repression by nuclear exosome as a prerequisite for intron-mediated enhancement in Saccharomyces cerevisiae. Biochim Biophys Acta Gene Regul Mech 1868(2):195089

Reference Help

Abstract


Introns can enhance gene expression, a phenomenon called intron-mediated enhancement (IME). Previously proposed IME mechanisms do not sufficiently explain the variability in enhancement levels, suggesting that IME mechanism has not been fully understood. A comprehensive screening of genes involved in IME can provide valuable insights. Recently, using a luciferase coding sequence (yCLuc), we showed that IME functions by relieving repression rather than simply enhancing expression. The expression of yCLuc is repressed by the specific nucleotide sequence UCUU, and adding an intron relieves this repression in the yeast Saccharomyces cerevisiae. Herein, genome-wide screenings were conducted using S. cerevisiae knockout strain libraries to identify genes involved in IME. For screening, yCLuc was expressed with and without an intron in knockout strains. Consequently, CDC73, a regulator of RNA polymerase II (RNAPII), was identified as essential for enhancement. Additionally, 23 genes specifically involved in the repression were identified. These 23 genes are related to nuclear exosomes, RNA modification, RNAPII regulation, the nuclear pore complex, ribosomes, and chromatin modification. Among these, genes associated with nuclear exosomes, which degrade various RNAs in the nucleus, showed the largest impact on expression. The RNA sequence UCUU has been reported as a target for RNA degradation by nuclear exosomes. These findings suggested that UCUU-containing coding sequences are primarily repressed via RNA degradation by the nuclear exosome through UCUU recognition, with this repression being relieved by the presence of an intron.

Reference Type
Journal Article
Authors
Kikuta H, Takeda S, Akada R, Hoshida H
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference