Primary Literature
TEXT HERE
- Prouteau M, et al. (2023) EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat Struct Mol Biol 30(3):273-285 PMID: 36702972
- Chen Z, et al. (2021) TORC1 Determines Fab1 Lipid Kinase Function at Signaling Endosomes and Vacuoles. Curr Biol 31(2):297-309.e8 PMID: 33157024
- Molinet J, et al. (2020) <i>GTR1</i> Affects Nitrogen Consumption and TORC1 Activity in <i>Saccharomyces cerevisiae</i> Under Fermentation Conditions. Front Genet 11:519 PMID: 32523604
- Uemura S, et al. (2020) Amino acid homeostatic control by TORC1 in <i>Saccharomyces cerevisiae</i> under high hydrostatic pressure. J Cell Sci 133(17) PMID: 32801125
- Hatakeyama R, et al. (2019) Spatially Distinct Pools of TORC1 Balance Protein Homeostasis. Mol Cell 73(2):325-338.e8 PMID: 30527664
- Zhang T, et al. (2019) Structural insights into the EGO-TC-mediated membrane tethering of the TORC1-regulatory Rag GTPases. Sci Adv 5(9):eaax8164 PMID: 31579828
- Ukai H, et al. (2018) Gtr/Ego-independent TORC1 activation is achieved through a glutamine-sensitive interaction with Pib2 on the vacuolar membrane. PLoS Genet 14(4):e1007334 PMID: 29698392
- Varlakhanova NV, et al. (2018) Ivy1 is a negative regulator of Gtr-dependent TORC1 activation. J Cell Sci 131(17) PMID: 30097557
- Liu NN, et al. (2017) Phosphate is the third nutrient monitored by TOR in <i>Candida albicans</i> and provides a target for fungal-specific indirect TOR inhibition. Proc Natl Acad Sci U S A 114(24):6346-6351 PMID: 28566496
- Varlakhanova NV, et al. (2017) Pib2 and the EGO complex are both required for activation of TORC1. J Cell Sci 130(22):3878-3890 PMID: 28993463
- Zhang ZT, et al. (2017) Akr1 attenuates methylmercury toxicity through the palmitoylation of Meh1 as a subunit of the yeast EGO complex. Biochim Biophys Acta Gen Subj 1861(7):1729-1736 PMID: 28315413
- Kim A and Cunningham KW (2015) A LAPF/phafin1-like protein regulates TORC1 and lysosomal membrane permeabilization in response to endoplasmic reticulum membrane stress. Mol Biol Cell 26(25):4631-45 PMID: 26510498
- Powis K, et al. (2015) Crystal structure of the Ego1-Ego2-Ego3 complex and its role in promoting Rag GTPase-dependent TORC1 signaling. Cell Res 25(9):1043-59 PMID: 26206314
- Evans SK, et al. (2014) Recovery from rapamycin: drug-insensitive activity of yeast target of rapamycin complex 1 (TORC1) supports residual proliferation that dilutes rapamycin among progeny cells. J Biol Chem 289(38):26554-26565 PMID: 25104356
- Panchaud N, et al. (2013) SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 12(18):2948-52 PMID: 23974112
- Yang H, et al. (2013) Control of cell growth: Rag GTPases in activation of TORC1. Cell Mol Life Sci 70(16):2873-85 PMID: 23242467
- Bonfils G, et al. (2012) Leucyl-tRNA synthetase controls TORC1 via the EGO complex. Mol Cell 46(1):105-10 PMID: 22424774
- Zhang T, et al. (2012) Ego3 functions as a homodimer to mediate the interaction between Gtr1-Gtr2 and Ego1 in the ego complex to activate TORC1. Structure 20(12):2151-60 PMID: 23123112
- Binda M, et al. (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35(5):563-73 PMID: 19748353
- Dubouloz F, et al. (2005) The TOR and EGO protein complexes orchestrate microautophagy in yeast. Mol Cell 19(1):15-26 PMID: 15989961