Primary Literature
TEXT HERE
- Li L, et al. (2024) Structure of the ISW1a complex bound to the dinucleosome. Nat Struct Mol Biol 31(2):266-274 PMID: 38177688
- OyarzĂșn-Cisterna A, et al. (2024) General regulatory factors exert differential effects on nucleosome sliding activity of the ISW1a complex. Biol Res 57(1):22 PMID: 38704609
- Prajapati HK, et al. (2024) The yeast genome is globally accessible in living cells. Nat Struct Mol Biol PMID: 39587299
- Amigo R, et al. (2023) Poly(dA:dT) Tracts Differentially Modulate Nucleosome Remodeling Activity of RSC and ISW1a Complexes, Exerting Tract Orientation-Dependent and -Independent Effects. Int J Mol Sci 24(20) PMID: 37894925
- Chacin E, et al. (2023) Establishment and function of chromatin organization at replication origins. Nature 616(7958):836-842 PMID: 37020028
- Litwin I, et al. (2023) ISW1a modulates cohesin distribution in centromeric and pericentromeric regions. Nucleic Acids Res 51(17):9101-9121 PMID: 37486771
- Matabishi-Bibi L, et al. (2022) Termination of the unfolded protein response is guided by ER stress-induced HAC1 mRNA nuclear retention. Nat Commun 13(1):6331 PMID: 36284099
- Eriksson PR and Clark DJ (2021) The yeast ISW1b ATP-dependent chromatin remodeler is critical for nucleosome spacing and dinucleosome resolution. Sci Rep 11(1):4195 PMID: 33602956
- Bhardwaj SK, et al. (2020) Dinucleosome specificity and allosteric switch of the ISW1a ATP-dependent chromatin remodeler in transcription regulation. Nat Commun 11(1):5913 PMID: 33219211
- Dao HT, et al. (2020) A basic motif anchoring ISWI to nucleosome acidic patch regulates nucleosome spacing. Nat Chem Biol 16(2):134-142 PMID: 31819269
- Chen YF, et al. (2016) Determinants of Sir2-Mediated, Silent Chromatin Cohesion. Mol Cell Biol 36(15):2039-50 PMID: 27185881
- Krietenstein N, et al. (2016) Genomic Nucleosome Organization Reconstituted with Pure Proteins. Cell 167(3):709-721.e12 PMID: 27768892
- Li M, et al. (2015) Dynamic regulation of transcription factors by nucleosome remodeling. Elife 4 PMID: 26047462
- Parnell TJ, et al. (2015) The chromatin remodelers RSC and ISW1 display functional and chromatin-based promoter antagonism. Elife 4:e06073 PMID: 25821983
- Hepp MI, et al. (2014) Nucleosome remodeling by the SWI/SNF complex is enhanced by yeast high mobility group box (HMGB) proteins. Biochim Biophys Acta 1839(9):764-72 PMID: 24972368
- Richmond TJ (2012) Nucleosome recognition and spacing by chromatin remodelling factor ISW1a. Biochem Soc Trans 40(2):347-50 PMID: 22435810
- Yen K, et al. (2012) Genome-wide nucleosome specificity and directionality of chromatin remodelers. Cell 149(7):1461-73 PMID: 22726434
- Sharma A, et al. (2011) Crystal structure of the chromodomain helicase DNA-binding protein 1 (Chd1) DNA-binding domain in complex with DNA. J Biol Chem 286(49):42099-42104 PMID: 22033927
- Udugama M, et al. (2011) The INO80 ATP-dependent chromatin remodeling complex is a nucleosome spacing factor. Mol Cell Biol 31(4):662-73 PMID: 21135121
- Yamada K, et al. (2011) Structure and mechanism of the chromatin remodelling factor ISW1a. Nature 472(7344):448-53 PMID: 21525927
- Gangaraju VK and Bartholomew B (2007) Dependency of ISW1a chromatin remodeling on extranucleosomal DNA. Mol Cell Biol 27(8):3217-25 PMID: 17283061
- Xella B, et al. (2006) The ISWI and CHD1 chromatin remodelling activities influence ADH2 expression and chromatin organization. Mol Microbiol 59(5):1531-41 PMID: 16468993
- Huh WK, et al. (2003) Global analysis of protein localization in budding yeast. Nature 425(6959):686-91 PMID: 14562095
- Vary JC, et al. (2003) Yeast Isw1p forms two separable complexes in vivo. Mol Cell Biol 23(1):80-91 PMID: 12482963