Primary Literature
TEXT HERE
- Koubek J, et al. (2024) Cellular translational enhancer elements that recruit eukaryotic initiation factor 3. RNA PMID: 39626887
- Wang J, et al. (2022) Rapid 40S scanning and its regulation by mRNA structure during eukaryotic translation initiation. Cell 185(24):4474-4487.e17 PMID: 36334590
- Kratzat H, et al. (2021) A structural inventory of native ribosomal ABCE1-43S pre-initiation complexes. EMBO J 40(1):e105179 PMID: 33289941
- Llácer JL, et al. (2021) Large-scale movement of eIF3 domains during translation initiation modulate start codon selection. Nucleic Acids Res 49(20):11491-11511 PMID: 34648019
- Malcova I, et al. (2021) eIF3a Destabilization and TDP-43 Alter Dynamics of Heat-Induced Stress Granules. Int J Mol Sci 22(10) PMID: 34068231
- Mohammad MP, et al. (2021) eIF4G is retained on ribosomes elongating and terminating on short upstream ORFs to control reinitiation in yeast. Nucleic Acids Res 49(15):8743-8756 PMID: 34352092
- Richard S, et al. (2021) Numerous Post-translational Modifications of RNA Polymerase II Subunit Rpb4/7 Link Transcription to Post-transcriptional Mechanisms. Cell Rep 34(2):108578 PMID: 33440147
- Stanciu A, et al. (2021) eIF3 and Its mRNA-Entry-Channel Arm Contribute to the Recruitment of mRNAs With Long 5'-Untranslated Regions. Front Mol Biosci 8:787664 PMID: 35087868
- Pöyry T, et al. (2020) Should I Stay or Should I Go: eIF3 Remains Ribosome Associated and Is Required for Elongation. Mol Cell 79(4):539-541 PMID: 32822578
- Wagner S, et al. (2020) Selective Translation Complex Profiling Reveals Staged Initiation and Co-translational Assembly of Initiation Factor Complexes. Mol Cell 79(4):546-560.e7 PMID: 32589964
- Poncová K, et al. (2019) uS3/Rps3 controls fidelity of translation termination and programmed stop codon readthrough in co-operation with eIF3. Nucleic Acids Res 47(21):11326-11343 PMID: 31642471
- Senohrabkova L, et al. (2019) An aggregation-prone mutant of eIF3a forms reversible assemblies escaping spatial control in exponentially growing yeast cells. Curr Genet 65(4):919-940 PMID: 30715564
- Zeman J, et al. (2019) Binding of eIF3 in complex with eIF5 and eIF1 to the 40S ribosomal subunit is accompanied by dramatic structural changes. Nucleic Acids Res 47(15):8282-8300 PMID: 31291455
- Zhang W, et al. (2019) NMR <sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N backbone and side chain resonance assignment of the N-terminal domain of yeast proteasome lid subunit Rpn5. Biomol NMR Assign 13(1):1-4 PMID: 30229448
- Dong J, et al. (2017) Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons. Proc Natl Acad Sci U S A 114(11):E2126-E2135 PMID: 28223523
- Opitz N, et al. (2017) Capturing the Asc1p/<i>R</i>eceptor for <i>A</i>ctivated <i>C K</i>inase <i>1</i> (RACK1) Microenvironment at the Head Region of the 40S Ribosome with Quantitative BioID in Yeast. Mol Cell Proteomics 16(12):2199-2218 PMID: 28982715
- Yourik P, et al. (2017) Yeast eIF4A enhances recruitment of mRNAs regardless of their structural complexity. Elife 6 PMID: 29192585
- Aitken CE, et al. (2016) Eukaryotic translation initiation factor 3 plays distinct roles at the mRNA entry and exit channels of the ribosomal preinitiation complex. Elife 5 PMID: 27782884
- Beznosková P, et al. (2016) Rules of UGA-N decoding by near-cognate tRNAs and analysis of readthrough on short uORFs in yeast. RNA 22(3):456-66 PMID: 26759455
- Das S and Das B (2016) eIF4G-an integrator of mRNA metabolism? FEMS Yeast Res 16(7) PMID: 27694156
- Agarwal D, et al. (2015) Unveiling Contacts within Macromolecular Assemblies by Solving Minimum Weight Connectivity Inference (MWC) Problems. Mol Cell Proteomics 14(8):2274-84 PMID: 25850436
- Beznosková P, et al. (2015) Translation initiation factor eIF3 promotes programmed stop codon readthrough. Nucleic Acids Res 43(10):5099-111 PMID: 25925566
- Grousl T, et al. (2015) Evolutionarily conserved 5'-3' exoribonuclease Xrn1 accumulates at plasma membrane-associated eisosomes in post-diauxic yeast. PLoS One 10(3):e0122770 PMID: 25811606
- Llácer JL, et al. (2015) Conformational Differences between Open and Closed States of the Eukaryotic Translation Initiation Complex. Mol Cell 59(3):399-412 PMID: 26212456
- Politis A, et al. (2015) Topological models of heteromeric protein assemblies from mass spectrometry: application to the yeast eIF3:eIF5 complex. Chem Biol 22(1):117-28 PMID: 25544043
- Erzberger JP, et al. (2014) Molecular architecture of the 40S⋅eIF1⋅eIF3 translation initiation complex. Cell 158(5):1123-1135 PMID: 25171412
- Gunišová S and Valášek LS (2014) Fail-safe mechanism of GCN4 translational control--uORF2 promotes reinitiation by analogous mechanism to uORF1 and thus secures its key role in GCN4 expression. Nucleic Acids Res 42(9):5880-93 PMID: 24623812
- Khoshnevis S, et al. (2014) Structural integrity of the PCI domain of eIF3a/TIF32 is required for mRNA recruitment to the 43S pre-initiation complexes. Nucleic Acids Res 42(6):4123-39 PMID: 24423867
- Nielsen KH (2014) Protein expression-yeast. Methods Enzymol 536:133-47 PMID: 24423273
- Villanyi Z, et al. (2014) The Not5 subunit of the ccr4-not complex connects transcription and translation. PLoS Genet 10(10):e1004569 PMID: 25340856
- Wagner S, et al. (2014) Functional and biochemical characterization of human eukaryotic translation initiation factor 3 in living cells. Mol Cell Biol 34(16):3041-52 PMID: 24912683
- Beznosková P, et al. (2013) Translation initiation factors eIF3 and HCR1 control translation termination and stop codon read-through in yeast cells. PLoS Genet 9(11):e1003962 PMID: 24278036
- Firczuk H, et al. (2013) An in vivo control map for the eukaryotic mRNA translation machinery. Mol Syst Biol 9:635 PMID: 23340841
- Rinnerthaler M, et al. (2013) Mmi1, the yeast homologue of mammalian TCTP, associates with stress granules in heat-shocked cells and modulates proteasome activity. PLoS One 8(10):e77791 PMID: 24204967
- Ellisdon AM and Stewart M (2012) Structural biology of the PCI-protein fold. Bioarchitecture 2(4):118-23 PMID: 22960705
- Gai Z, et al. (2012) The binding mechanism of eIF2β with its partner proteins, eIF5 and eIF2Bε. Biochem Biophys Res Commun 423(3):515-9 PMID: 22683627
- Herrmannová A, et al. (2012) Structural analysis of an eIF3 subcomplex reveals conserved interactions required for a stable and proper translation pre-initiation complex assembly. Nucleic Acids Res 40(5):2294-311 PMID: 22090426
- Karásková M, et al. (2012) Functional characterization of the role of the N-terminal domain of the c/Nip1 subunit of eukaryotic initiation factor 3 (eIF3) in AUG recognition. J Biol Chem 287(34):28420-34 PMID: 22718758
- Khoshnevis S, et al. (2012) Novel insights into the architecture and protein interaction network of yeast eIF3. RNA 18(12):2306-19 PMID: 23105002
- Kouba T, et al. (2012) Small ribosomal protein RPS0 stimulates translation initiation by mediating 40S-binding of eIF3 via its direct contact with the eIF3a/TIF32 subunit. PLoS One 7(7):e40464 PMID: 22792338
- Kouba T, et al. (2012) The eIF3c/NIP1 PCI domain interacts with RNA and RACK1/ASC1 and promotes assembly of translation preinitiation complexes. Nucleic Acids Res 40(6):2683-99 PMID: 22123745
- Sweet T, et al. (2012) The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol 10(6):e1001342 PMID: 22719226
- Castelli LM, et al. (2011) Glucose depletion inhibits translation initiation via eIF4A loss and subsequent 48S preinitiation complex accumulation, while the pentose phosphate pathway is coordinately up-regulated. Mol Biol Cell 22(18):3379-93 PMID: 21795399
- Farley AR, et al. (2011) Assessing the components of the eIF3 complex and their phosphorylation status. J Proteome Res 10(4):1481-94 PMID: 21280672
- Kato K, et al. (2011) Severe ethanol stress induces assembly of stress granules in Saccharomyces cerevisiae. Yeast 28(5):339-47 PMID: 21341306
- Munzarová V, et al. (2011) Translation reinitiation relies on the interaction between eIF3a/TIF32 and progressively folded cis-acting mRNA elements preceding short uORFs. PLoS Genet 7(7):e1002137 PMID: 21750682
- Singh CR, et al. (2011) Mechanisms of translational regulation by a human eIF5-mimic protein. Nucleic Acids Res 39(19):8314-28 PMID: 21745818
- Chiu WL, et al. (2010) The C-terminal region of eukaryotic translation initiation factor 3a (eIF3a) promotes mRNA recruitment, scanning, and, together with eIF3j and the eIF3b RNA recognition motif, selection of AUG start codons. Mol Cell Biol 30(18):4415-34 PMID: 20584985
- Cuchalová L, et al. (2010) The RNA recognition motif of eukaryotic translation initiation factor 3g (eIF3g) is required for resumption of scanning of posttermination ribosomes for reinitiation on GCN4 and together with eIF3i stimulates linear scanning. Mol Cell Biol 30(19):4671-86 PMID: 20679478
- Elantak L, et al. (2010) The indispensable N-terminal half of eIF3j/HCR1 cooperates with its structurally conserved binding partner eIF3b/PRT1-RRM and with eIF1A in stringent AUG selection. J Mol Biol 396(4):1097-116 PMID: 20060839
- Harel-Sharvit L, et al. (2010) RNA polymerase II subunits link transcription and mRNA decay to translation. Cell 143(4):552-63 PMID: 21074047
- Khoshnevis S, et al. (2010) Crystal structure of the RNA recognition motif of yeast translation initiation factor eIF3b reveals differences to human eIF3b. PLoS One 5(9) PMID: 20862284
- Khoshnevis S, et al. (2010) The iron-sulphur protein RNase L inhibitor functions in translation termination. EMBO Rep 11(3):214-9 PMID: 20062004
- Lumsden T, et al. (2010) Yeast strains with N-terminally truncated ribosomal protein S5: implications for the evolution, structure and function of the Rps5/Rps7 proteins. Nucleic Acids Res 38(4):1261-72 PMID: 19969550
- Mitchell SF, et al. (2010) The 5'-7-methylguanosine cap on eukaryotic mRNAs serves both to stimulate canonical translation initiation and to block an alternative pathway. Mol Cell 39(6):950-62 PMID: 20864040
- Rosenfeld AB and Racaniello VR (2010) Components of the multifactor complex needed for internal initiation by the IRES of hepatitis C virus in Saccharomyces cerevisiae. RNA Biol 7(5):596-605 PMID: 20935471
- Roy B, et al. (2010) The h subunit of eIF3 promotes reinitiation competence during translation of mRNAs harboring upstream open reading frames. RNA 16(4):748-61 PMID: 20179149
- Wen WL, et al. (2010) Vgl1, a multi-KH domain protein, is a novel component of the fission yeast stress granules required for cell survival under thermal stress. Nucleic Acids Res 38(19):6555-66 PMID: 20547592
- You T, et al. (2010) A quantitative model for mRNA translation in Saccharomyces cerevisiae. Yeast 27(10):785-800 PMID: 20306461
- Deniz N, et al. (2009) Translation initiation factors are not required for Dicistroviridae IRES function in vivo. RNA 15(5):932-46 PMID: 19299549
- Grousl T, et al. (2009) Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci 122(Pt 12):2078-88 PMID: 19470581
- Pick E, et al. (2009) PCI complexes: Beyond the proteasome, CSN, and eIF3 Troika. Mol Cell 35(3):260-4 PMID: 19683491
- Amrani N, et al. (2008) Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453(7199):1276-80 PMID: 18496529
- Bolger TA, et al. (2008) The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134(4):624-33 PMID: 18724935
- Reibarkh M, et al. (2008) Eukaryotic initiation factor (eIF) 1 carries two distinct eIF5-binding faces important for multifactor assembly and AUG selection. J Biol Chem 283(2):1094-103 PMID: 17974565
- Szamecz B, et al. (2008) eIF3a cooperates with sequences 5' of uORF1 to promote resumption of scanning by post-termination ribosomes for reinitiation on GCN4 mRNA. Genes Dev 22(17):2414-25 PMID: 18765792
- Zhou M, et al. (2008) Mass spectrometry reveals modularity and a complete subunit interaction map of the eukaryotic translation factor eIF3. Proc Natl Acad Sci U S A 105(47):18139-44 PMID: 18599441
- Cheung YN, et al. (2007) Dissociation of eIF1 from the 40S ribosomal subunit is a key step in start codon selection in vivo. Genes Dev 21(10):1217-30 PMID: 17504939
- Masutani M, et al. (2007) Reconstitution reveals the functional core of mammalian eIF3. EMBO J 26(14):3373-83 PMID: 17581632
- Nielsen KH and Valásek L (2007) In vivo deletion analysis of the architecture of a multiprotein complex of translation initiation factors. Methods Enzymol 431:15-32 PMID: 17923228
- Singh CR, et al. (2007) Change in nutritional status modulates the abundance of critical pre-initiation intermediate complexes during translation initiation in vivo. J Mol Biol 370(2):315-30 PMID: 17512538
- Jao DL and Chen KY (2006) Tandem affinity purification revealed the hypusine-dependent binding of eukaryotic initiation factor 5A to the translating 80S ribosomal complex. J Cell Biochem 97(3):583-98 PMID: 16215987
- Jivotovskaya AV, et al. (2006) Eukaryotic translation initiation factor 3 (eIF3) and eIF2 can promote mRNA binding to 40S subunits independently of eIF4G in yeast. Mol Cell Biol 26(4):1355-72 PMID: 16449648
- Malcová-Janatová I, et al. (2006) The fission yeast ortholog of eIF3a subunit is not functional in Saccharomyces cerevisiae. Folia Microbiol (Praha) 51(6):555-64 PMID: 17455792
- Nielsen KH, et al. (2006) Interaction of the RNP1 motif in PRT1 with HCR1 promotes 40S binding of eukaryotic initiation factor 3 in yeast. Mol Cell Biol 26(8):2984-98 PMID: 16581774
- Singh CR, et al. (2006) An eIF5/eIF2 complex antagonizes guanine nucleotide exchange by eIF2B during translation initiation. EMBO J 25(19):4537-46 PMID: 16990799
- Fekete CA, et al. (2005) The eIF1A C-terminal domain promotes initiation complex assembly, scanning and AUG selection in vivo. EMBO J 24(20):3588-601 PMID: 16193068
- Komar AA, et al. (2005) Novel characteristics of the biological properties of the yeast Saccharomyces cerevisiae eukaryotic initiation factor 2A. J Biol Chem 280(16):15601-11 PMID: 15718232
- Majumdar R and Maitra U (2005) Regulation of GTP hydrolysis prior to ribosomal AUG selection during eukaryotic translation initiation. EMBO J 24(21):3737-46 PMID: 16222335
- Yarunin A, et al. (2005) Functional link between ribosome formation and biogenesis of iron-sulfur proteins. EMBO J 24(3):580-8 PMID: 15660135
- Dong J, et al. (2004) The essential ATP-binding cassette protein RLI1 functions in translation by promoting preinitiation complex assembly. J Biol Chem 279(40):42157-68 PMID: 15277527
- Hinnebusch AG, et al. (2004) Study of translational control of eukaryotic gene expression using yeast. Ann N Y Acad Sci 1038:60-74 PMID: 15838098
- Nielsen KH, et al. (2004) Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control. EMBO J 23(5):1166-77 PMID: 14976554
- Singh CR, et al. (2004) Physical association of eukaryotic initiation factor (eIF) 5 carboxyl-terminal domain with the lysine-rich eIF2beta segment strongly enhances its binding to eIF3. J Biol Chem 279(48):49644-55 PMID: 15377664
- Singh CR, et al. (2004) Efficient incorporation of eukaryotic initiation factor 1 into the multifactor complex is critical for formation of functional ribosomal preinitiation complexes in vivo. J Biol Chem 279(30):31910-20 PMID: 15145951
- Valásek L, et al. (2004) Interactions of eukaryotic translation initiation factor 3 (eIF3) subunit NIP1/c with eIF1 and eIF5 promote preinitiation complex assembly and regulate start codon selection. Mol Cell Biol 24(21):9437-55 PMID: 15485912
- Gross JD, et al. (2003) Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell 115(6):739-50 PMID: 14675538
- He H, et al. (2003) The yeast eukaryotic initiation factor 4G (eIF4G) HEAT domain interacts with eIF1 and eIF5 and is involved in stringent AUG selection. Mol Cell Biol 23(15):5431-45 PMID: 12861028
- Maag D and Lorsch JR (2003) Communication between eukaryotic translation initiation factors 1 and 1A on the yeast small ribosomal subunit. J Mol Biol 330(5):917-24 PMID: 12860115
- Maiti T, et al. (2003) Casein kinase II phosphorylates translation initiation factor 5 (eIF5) in Saccharomyces cerevisiae. Yeast 20(2):97-108 PMID: 12518314
- Maytal-Kivity V, et al. (2003) The COP9 signalosome-like complex in S. cerevisiae and links to other PCI complexes. Int J Biochem Cell Biol 35(5):706-15 PMID: 12672462
- Olsen DS, et al. (2003) Domains of eIF1A that mediate binding to eIF2, eIF3 and eIF5B and promote ternary complex recruitment in vivo. EMBO J 22(2):193-204 PMID: 12514125
- Valásek L, et al. (2003) The yeast eIF3 subunits TIF32/a, NIP1/c, and eIF5 make critical connections with the 40S ribosome in vivo. Genes Dev 17(6):786-99 PMID: 12651896
- Ling J, et al. (2002) The histone 3'-terminal stem-loop-binding protein enhances translation through a functional and physical interaction with eukaryotic initiation factor 4G (eIF4G) and eIF3. Mol Cell Biol 22(22):7853-67 PMID: 12391154
- Maytal-Kivity V, et al. (2002) MPN+, a putative catalytic motif found in a subset of MPN domain proteins from eukaryotes and prokaryotes, is critical for Rpn11 function. BMC Biochem 3:28 PMID: 12370088
- Valásek L, et al. (2002) Direct eIF2-eIF3 contact in the multifactor complex is important for translation initiation in vivo. EMBO J 21(21):5886-98 PMID: 12411506
- Asano K, et al. (2001) Multiple roles for the C-terminal domain of eIF5 in translation initiation complex assembly and GTPase activation. EMBO J 20(9):2326-37 PMID: 11331597
- Burks EA, et al. (2001) Plant initiation factor 3 subunit composition resembles mammalian initiation factor 3 and has a novel subunit. J Biol Chem 276(3):2122-31 PMID: 11042177
- Das S and Maitra U (2001) Functional significance and mechanism of eIF5-promoted GTP hydrolysis in eukaryotic translation initiation. Prog Nucleic Acid Res Mol Biol 70:207-31 PMID: 11642363
- Palecek J, et al. (2001) Rpg1p/Tif32p, a subunit of translation initiation factor 3, interacts with actin-associated protein Sla2p. Biochem Biophys Res Commun 282(5):1244-50 PMID: 11302750
- Phan L, et al. (2001) A subcomplex of three eIF3 subunits binds eIF1 and eIF5 and stimulates ribosome binding of mRNA and tRNA(i)Met. EMBO J 20(11):2954-65 PMID: 11387228
- Shalev A, et al. (2001) Saccharomyces cerevisiae protein Pci8p and human protein eIF3e/Int-6 interact with the eIF3 core complex by binding to cognate eIF3b subunits. J Biol Chem 276(37):34948-57 PMID: 11457827
- Valásek L, et al. (2001) Dual function of eIF3j/Hcr1p in processing 20 S pre-rRNA and translation initiation. J Biol Chem 276(46):43351-60 PMID: 11560931
- Valásek L, et al. (2001) Related eIF3 subunits TIF32 and HCR1 interact with an RNA recognition motif in PRT1 required for eIF3 integrity and ribosome binding. EMBO J 20(4):891-904 PMID: 11179233
- Asano K, et al. (2000) A multifactor complex of eukaryotic initiation factors, eIF1, eIF2, eIF3, eIF5, and initiator tRNA(Met) is an important translation initiation intermediate in vivo. Genes Dev 14(19):2534-46 PMID: 11018020
- Brown JT, et al. (2000) Inhibition of mRNA turnover in yeast by an xrn1 mutation enhances the requirement for eIF4E binding to eIF4G and for proper capping of transcripts by Ceg1p. Genetics 155(1):31-42 PMID: 10790382
- Das S and Maitra U (2000) Mutational analysis of mammalian translation initiation factor 5 (eIF5): role of interaction between the beta subunit of eIF2 and eIF5 in eIF5 function in vitro and in vivo. Mol Cell Biol 20(11):3942-50 PMID: 10805737
- Hasek J, et al. (2000) Rpg1p, the subunit of the Saccharomyces cerevisiae eIF3 core complex, is a microtubule-interacting protein. Cell Motil Cytoskeleton 45(3):235-46 PMID: 10706778
- Maiti T, et al. (2000) Isolation and functional characterization of a temperature-sensitive mutant of the yeast Saccharomyces cerevisiae in translation initiation factor eIF5: an eIF5-dependent cell-free translation system. Gene 244(1-2):109-18 PMID: 10689193
- Asano K, et al. (1999) Conserved bipartite motifs in yeast eIF5 and eIF2Bepsilon, GTPase-activating and GDP-GTP exchange factors in translation initiation, mediate binding to their common substrate eIF2. EMBO J 18(6):1673-88 PMID: 10075937
- Fletcher CM, et al. (1999) Structure and interactions of the translation initiation factor eIF1. EMBO J 18(9):2631-7 PMID: 10228174
- Hanachi P, et al. (1999) Characterization of the p33 subunit of eukaryotic translation initiation factor-3 from Saccharomyces cerevisiae. J Biol Chem 274(13):8546-53 PMID: 10085088
- Mangus DA and Jacobson A (1999) Linking mRNA turnover and translation: assessing the polyribosomal association of mRNA decay factors and degradative intermediates. Methods 17(1):28-37 PMID: 10075880
- Valásek L, et al. (1999) The Saccharomyces cerevisiae HCR1 gene encoding a homologue of the p35 subunit of human translation initiation factor 3 (eIF3) is a high copy suppressor of a temperature-sensitive mutation in the Rpg1p subunit of yeast eIF3. J Biol Chem 274(39):27567-72 PMID: 10488093
- Vornlocher HP, et al. (1999) A 110-kilodalton subunit of translation initiation factor eIF3 and an associated 135-kilodalton protein are encoded by the Saccharomyces cerevisiae TIF32 and TIF31 genes. J Biol Chem 274(24):16802-12 PMID: 10358023
- Aravind L and Ponting CP (1998) Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 7(5):1250-4 PMID: 9605331
- Asano K, et al. (1998) Complex formation by all five homologues of mammalian translation initiation factor 3 subunits from yeast Saccharomyces cerevisiae. J Biol Chem 273(29):18573-85 PMID: 9660829
- Block KL, et al. (1998) Characterization of cDNAs encoding the p44 and p35 subunits of human translation initiation factor eIF3. J Biol Chem 273(48):31901-8 PMID: 9822659
- Glickman MH, et al. (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94(5):615-23 PMID: 9741626
- Humphrey T and Enoch T (1998) Sum1, a highly conserved WD-repeat protein, suppresses S-M checkpoint mutants and inhibits the osmotic stress cell cycle response in fission yeast. Genetics 148(4):1731-42 PMID: 9560390
- Phan L, et al. (1998) Identification of a translation initiation factor 3 (eIF3) core complex, conserved in yeast and mammals, that interacts with eIF5. Mol Cell Biol 18(8):4935-46 PMID: 9671501
- Scheffler IE, et al. (1998) Control of mRNA turnover as a mechanism of glucose repression in Saccharomyces cerevisiae. Int J Biochem Cell Biol 30(11):1175-93 PMID: 9839444
- Valásek L, et al. (1998) Rpg1, the Saccharomyces cerevisiae homologue of the largest subunit of mammalian translation initiation factor 3, is required for translational activity. J Biol Chem 273(33):21253-60 PMID: 9694884
- Wei N, et al. (1998) The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8(16):919-22 PMID: 9707402
- Asano K, et al. (1997) Conservation and diversity of eukaryotic translation initiation factor eIF3. J Biol Chem 272(2):1101-9 PMID: 8995409
- Asano K, et al. (1997) Structure of cDNAs encoding human eukaryotic initiation factor 3 subunits. Possible roles in RNA binding and macromolecular assembly. J Biol Chem 272(43):27042-52 PMID: 9341143
- Chaudhuri J, et al. (1997) Biochemical characterization of mammalian translation initiation factor 3 (eIF3). Molecular cloning reveals that p110 subunit is the mammalian homologue of Saccharomyces cerevisiae protein Prt1. J Biol Chem 272(49):30975-83 PMID: 9388245
- Das S, et al. (1997) Specific interaction of eukaryotic translation initiation factor 5 (eIF5) with the beta-subunit of eIF2. J Biol Chem 272(50):31712-8 PMID: 9395514
- Imataka H and Sonenberg N (1997) Human eukaryotic translation initiation factor 4G (eIF4G) possesses two separate and independent binding sites for eIF4A. Mol Cell Biol 17(12):6940-7 PMID: 9372926
- Méthot N, et al. (1997) The human homologue of the yeast Prt1 protein is an integral part of the eukaryotic initiation factor 3 complex and interacts with p170. J Biol Chem 272(2):1110-6 PMID: 8995410
- Naranda T, et al. (1997) The 39-kilodalton subunit of eukaryotic translation initiation factor 3 is essential for the complex's integrity and for cell viability in Saccharomyces cerevisiae. Mol Cell Biol 17(1):145-53 PMID: 8972194
- Verlhac MH, et al. (1997) Identification of partners of TIF34, a component of the yeast eIF3 complex, required for cell proliferation and translation initiation. EMBO J 16(22):6812-22 PMID: 9362495
- Hershey JW, et al. (1996) Conservation and diversity in the structure of translation initiation factor EIF3 from humans and yeast. Biochimie 78(11-12):903-7 PMID: 9150866
- Naranda T, et al. (1996) SUI1/p16 is required for the activity of eukaryotic translation initiation factor 3 in Saccharomyces cerevisiae. Mol Cell Biol 16(5):2307-13 PMID: 8628297
- Cereghino GP, et al. (1995) Glucose-dependent turnover of the mRNAs encoding succinate dehydrogenase peptides in Saccharomyces cerevisiae: sequence elements in the 5' untranslated region of the Ip mRNA play a dominant role. Mol Biol Cell 6(9):1125-43 PMID: 8534911