Primary Literature
TEXT HERE
- Gaubitz C, et al. (2022) Cryo-EM structures reveal high-resolution mechanism of a DNA polymerase sliding clamp loader. Elife 11 PMID: 35179493
- Schrecker M, et al. (2022) Multistep loading of a DNA sliding clamp onto DNA by replication factor C. Elife 11 PMID: 35939393
- Wegmann S, et al. (2022) Linkage reprogramming by tailor-made E3s reveals polyubiquitin chain requirements in DNA-damage bypass. Mol Cell 82(8):1589-1602.e5 PMID: 35263628
- Alekseeva EA, et al. (2021) Participation of the HIM1 gene of yeast Saccharomyces cerevisiae in the error-free branch of post-replicative repair and role Polη in him1-dependent mutagenesis. Curr Genet 67(1):141-151 PMID: 33128582
- Frittmann O, et al. (2021) The Zn-finger of Saccharomyces cerevisiae Rad18 and its adjacent region mediate interaction with Rad5. G3 (Bethesda) 11(4) PMID: 33570581
- Hayashi M, et al. (2021) A Conserved Histone H3-H4 Interface Regulates DNA Damage Tolerance and Homologous Recombination during the Recovery from Replication Stress. Mol Cell Biol 41(4) PMID: 33526454
- Kumari P, et al. (2021) Interdomain connecting loop and J loop structures determine cross-species compatibility of PCNA. J Biol Chem 297(1):100911 PMID: 34175309
- Lin Y, et al. (2021) Function and molecular mechanisms of APE2 in genome and epigenome integrity. Mutat Res Rev Mutat Res 787:108347 PMID: 34083046
- Purohit A, et al. (2021) Potassium Glutamate and Glycine Betaine Induce Self-Assembly of the PCNA and β-Sliding Clamps. Biophys J 120(1):73-85 PMID: 33221249
- Reyes GX, et al. (2021) Ligation of newly replicated DNA controls the timing of DNA mismatch repair. Curr Biol 31(6):1268-1276.e6 PMID: 33417883
- Shen M, et al. (2021) Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nat Commun 12(1):321 PMID: 33436623
- Shen S, et al. (2021) Photo-activatable Ub-PCNA probes reveal new structural features of the Saccharomyces cerevisiae Polη/PCNA complex. Nucleic Acids Res 49(16):9374-9388 PMID: 34390346
- Vernekar DV, et al. (2021) The Pif1 helicase is actively inhibited during meiotic recombination which restrains gene conversion tract length. Nucleic Acids Res 49(8):4522-4533 PMID: 33823531
- Yoshimura A, et al. (2021) Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene 784:145584 PMID: 33753149
- Arbel M, et al. (2020) How yeast cells deal with stalled replication forks. Curr Genet 66(5):911-915 PMID: 32394094
- Arbel M, et al. (2020) Access to PCNA by Srs2 and Elg1 Controls the Choice between Alternative Repair Pathways in Saccharomyces cerevisiae. mBio 11(3) PMID: 32371600
- Cannavo E, et al. (2020) Regulation of the MLH1-MLH3 endonuclease in meiosis. Nature 586(7830):618-622 PMID: 32814904
- Duong PTM, et al. (2020) The interaction between ubiquitin and yeast polymerase η C terminus does not require the UBZ domain. FEBS Lett 594(11):1726-1737 PMID: 32239506
- Fan L, et al. (2020) DNA-damage tolerance through PCNA ubiquitination and sumoylation. Biochem J 477(14):2655-2677 PMID: 32726436
- Fenteany G, et al. (2020) Robust high-throughput assays to assess discrete steps in ubiquitination and related cascades. BMC Mol Cell Biol 21(1):21 PMID: 32228444
- Jiménez-Martín A, et al. (2020) The Mgs1/WRNIP1 ATPase is required to prevent a recombination salvage pathway at damaged replication forks. Sci Adv 6(15):eaaz3327 PMID: 32285001
- Kulkarni DS, et al. (2020) PCNA activates the MutLγ endonuclease to promote meiotic crossing over. Nature 586(7830):623-627 PMID: 32814343
- Lee KY and Park SH (2020) Eukaryotic clamp loaders and unloaders in the maintenance of genome stability. Exp Mol Med 52(12):1948-1958 PMID: 33339954
- Lehmann CP, et al. (2020) Prevention of unwanted recombination at damaged replication forks. Curr Genet 66(6):1045-1051 PMID: 32671464
- Liu HW, et al. (2020) Division of Labor between PCNA Loaders in DNA Replication and Sister Chromatid Cohesion Establishment. Mol Cell 78(4):725-738.e4 PMID: 32277910
- Ripley BM, et al. (2020) Yeast DNA polymerase η possesses two PIP-like motifs that bind PCNA and Rad6-Rad18 with different specificities. DNA Repair (Amst) 95:102968 PMID: 32932109
- Sau S and Kupiec M (2020) A role for the yeast PCNA unloader Elg1 in eliciting the DNA damage checkpoint. Curr Genet 66(1):79-84 PMID: 31332476
- Selvam K, et al. (2020) Histone H4 LRS mutations can attenuate UV mutagenesis without affecting PCNA ubiquitination or sumoylation. DNA Repair (Amst) 95:102959 PMID: 32927239
- Shor E, et al. (2020) A Noncanonical DNA Damage Checkpoint Response in a Major Fungal Pathogen. mBio 11(6) PMID: 33323516
- Stokes K, et al. (2020) Ctf18-RFC and DNA Pol ϵ form a stable leading strand polymerase/clamp loader complex required for normal and perturbed DNA replication. Nucleic Acids Res 48(14):8128-8145 PMID: 32585006
- Takahashi TS, et al. (2020) Effects of chain length and geometry on the activation of DNA damage bypass by polyubiquitylated PCNA. Nucleic Acids Res 48(6):3042-3052 PMID: 32009145
- Voordeckers K, et al. (2020) Ethanol exposure increases mutation rate through error-prone polymerases. Nat Commun 11(1):3664 PMID: 32694532
- Yuan Z, et al. (2020) Structure of the polymerase ε holoenzyme and atomic model of the leading strand replisome. Nat Commun 11(1):3156 PMID: 32572031
- Zheng F, et al. (2020) Structure of eukaryotic DNA polymerase δ bound to the PCNA clamp while encircling DNA. Proc Natl Acad Sci U S A 117(48):30344-30353 PMID: 33203675
- Álvarez V, et al. (2019) PCNA Deubiquitylases Control DNA Damage Bypass at Replication Forks. Cell Rep 29(5):1323-1335.e5 PMID: 31665643
- Brothers M and Rine J (2019) Mutations in the PCNA DNA Polymerase Clamp of <i>Saccharomyces cerevisiae</i> Reveal Complexities of the Cell Cycle and Ploidy on Heterochromatin Assembly. Genetics 213(2):449-463 PMID: 31451562
- Bryant EE, et al. (2019) Rad5 dysregulation drives hyperactive recombination at replication forks resulting in cisplatin sensitivity and genome instability. Nucleic Acids Res 47(17):9144-9159 PMID: 31350889
- Gallo D, et al. (2019) Rad5 Recruits Error-Prone DNA Polymerases for Mutagenic Repair of ssDNA Gaps on Undamaged Templates. Mol Cell 73(5):900-914.e9 PMID: 30733119
- Jiang Q, et al. (2019) Dissecting PCNA function with a systematically designed mutant library in yeast. J Genet Genomics 46(6):301-313 PMID: 31281030
- Kang MS, et al. (2019) Regulation of PCNA cycling on replicating DNA by RFC and RFC-like complexes. Nat Commun 10(1):2420 PMID: 31160570
- Masłowska KH, et al. (2019) iDamage: a method to integrate modified DNA into the yeast genome. Nucleic Acids Res 47(20):e124 PMID: 31418026
- Masuda Y and Masutani C (2019) Spatiotemporal regulation of PCNA ubiquitination in damage tolerance pathways. Crit Rev Biochem Mol Biol 54(5):418-442 PMID: 31736364
- Mondol T, et al. (2019) PCNA accelerates the nucleotide incorporation rate by DNA polymerase δ. Nucleic Acids Res 47(4):1977-1986 PMID: 30605530
- Paul Solomon Devakumar LJ, et al. (2019) Effective mismatch repair depends on timely control of PCNA retention on DNA by the Elg1 complex. Nucleic Acids Res 47(13):6826-6841 PMID: 31114918
- Sau S, et al. (2019) The Yeast PCNA Unloader Elg1 RFC-Like Complex Plays a Role in Eliciting the DNA Damage Checkpoint. mBio 10(3) PMID: 31186330
- Sun H, et al. (2019) Cul4-Ddb1 ubiquitin ligases facilitate DNA replication-coupled sister chromatid cohesion through regulation of cohesin acetyltransferase Esco2. PLoS Genet 15(2):e1007685 PMID: 30779731
- Young TJ, et al. (2019) Modulation of Gene Silencing by Cdc7p via H4 K16 Acetylation and Phosphorylation of Chromatin Assembly Factor CAF-1 in <i>Saccharomyces cerevisiae</i>. Genetics 211(4):1219-1237 PMID: 30728156
- Becker JR, et al. (2018) Flap endonuclease overexpression drives genome instability and DNA damage hypersensitivity in a PCNA-dependent manner. Nucleic Acids Res 46(11):5634-5650 PMID: 29741650
- Bronstein A, et al. (2018) The Main Role of Srs2 in DNA Repair Depends on Its Helicase Activity, Rather than on Its Interactions with PCNA or Rad51. mBio 9(4) PMID: 30018112
- Chakraborty U, et al. (2018) Genomic Instability Promoted by Overexpression of Mismatch Repair Factors in Yeast: A Model for Understanding Cancer Progression. Genetics 209(2):439-456 PMID: 29654124
- Dahan D, et al. (2018) Pif1 is essential for efficient replisome progression through lagging strand G-quadruplex DNA secondary structures. Nucleic Acids Res 46(22):11847-11857 PMID: 30395308
- Gali VK, et al. (2018) Identification of Elg1 interaction partners and effects on post-replication chromatin re-formation. PLoS Genet 14(11):e1007783 PMID: 30418970
- Gong P, et al. (2018) Activity-based ubiquitin-protein probes reveal target protein specificity of deubiquitinating enzymes. Chem Sci 9(40):7859-7865 PMID: 30429995
- Grabarczyk DB, et al. (2018) Structural Basis for the Recruitment of Ctf18-RFC to the Replisome. Structure 26(1):137-144.e3 PMID: 29225079
- Janke R, et al. (2018) Pivotal roles of PCNA loading and unloading in heterochromatin function. Proc Natl Acad Sci U S A 115(9):E2030-E2039 PMID: 29440488
- Kondratick CM, et al. (2018) Crystal structures of PCNA mutant proteins defective in gene silencing suggest a novel interaction site on the front face of the PCNA ring. PLoS One 13(3):e0193333 PMID: 29499038
- Li F, et al. (2018) Sgs1 helicase is required for efficient PCNA monoubiquitination and translesion DNA synthesis in Saccharomyces cerevisiae. Curr Genet 64(2):459-468 PMID: 28918480
- Olaisen C, et al. (2018) The role of PCNA as a scaffold protein in cellular signaling is functionally conserved between yeast and humans. FEBS Open Bio 8(7):1135-1145 PMID: 29988559
- Sakamoto AN, et al. (2018) Deletion of TLS polymerases promotes homologous recombination in Arabidopsis. Plant Signal Behav 13(7):e1483673 PMID: 29944437
- Thurston AK, et al. (2018) Genome Instability Is Promoted by the Chromatin-Binding Protein Spn1 in <i>Saccharomyces cerevisiae</i>. Genetics 210(4):1227-1237 PMID: 30301740
- Bai L, et al. (2017) Architecture of the Saccharomyces cerevisiae Replisome. Adv Exp Med Biol 1042:207-228 PMID: 29357060
- Billon P, et al. (2017) Acetylation of PCNA Sliding Surface by Eco1 Promotes Genome Stability through Homologous Recombination. Mol Cell 65(1):78-90 PMID: 27916662
- Bi X, et al. (2017) Proliferating cell nuclear antigen (PCNA) contributes to the high-order structure and stability of heterochromatin in Saccharomyces cerevisiae. Chromosome Res 25(2):89-100 PMID: 27987109
- Bowen N and Kolodner RD (2017) Reconstitution of <i>Saccharomyces cerevisiae</i> DNA polymerase ε-dependent mismatch repair with purified proteins. Proc Natl Acad Sci U S A 114(14):3607-3612 PMID: 28265089
- Buzovetsky O, et al. (2017) Role of the Pif1-PCNA Complex in Pol δ-Dependent Strand Displacement DNA Synthesis and Break-Induced Replication. Cell Rep 21(7):1707-1714 PMID: 29141206
- Fasullo MT and Sun M (2017) Both <i>RAD5</i>-dependent and independent pathways are involved in DNA damage-associated sister chromatid exchange in budding yeast. AIMS Genet 4(2):84-102 PMID: 28596989
- Genschel J, et al. (2017) Interaction of proliferating cell nuclear antigen with PMS2 is required for MutLα activation and function in mismatch repair. Proc Natl Acad Sci U S A 114(19):4930-4935 PMID: 28439008
- Gervai JZ, et al. (2017) A genetic study based on PCNA-ubiquitin fusions reveals no requirement for PCNA polyubiquitylation in DNA damage tolerance. DNA Repair (Amst) 54:46-54 PMID: 28458162
- Kim Y, et al. (2017) Efficient modification of λ-DNA substrates for single-molecule studies. Sci Rep 7(1):2071 PMID: 28522818
- Kramarz K, et al. (2017) DNA Damage Tolerance Pathway Choice Through Uls1 Modulation of Srs2 SUMOylation in <i>Saccharomyces cerevisiae</i>. Genetics 206(1):513-525 PMID: 28341648
- Lev I, et al. (2017) A New Method, "Reverse Yeast Two-Hybrid Array" (RYTHA), Identifies Mutants that Dissociate the Physical Interaction Between Elg1 and Slx5. Genetics 206(3):1683-1697 PMID: 28476868
- Lewis JS, et al. (2017) Single-molecule visualization of <i>Saccharomyces cerevisiae</i> leading-strand synthesis reveals dynamic interaction between MTC and the replisome. Proc Natl Acad Sci U S A 114(40):10630-10635 PMID: 28923950
- Liu J, et al. (2017) Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. J Biol Chem 292(38):15892-15906 PMID: 28808059
- Liu J, et al. (2017) Srs2 promotes synthesis-dependent strand annealing by disrupting DNA polymerase δ-extending D-loops. Elife 6 PMID: 28535142
- Nguyen JHG, et al. (2017) Differential requirement of Srs2 helicase and Rad51 displacement activities in replication of hairpin-forming CAG/CTG repeats. Nucleic Acids Res 45(8):4519-4531 PMID: 28175398
- Niu H and Klein HL (2017) Multifunctional roles of Saccharomyces cerevisiae Srs2 protein in replication, recombination and repair. FEMS Yeast Res 17(2) PMID: 28011904
- Schauer GD and O'Donnell ME (2017) Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Proc Natl Acad Sci U S A 114(4):675-680 PMID: 28069954
- Shemesh K, et al. (2017) A structure-function analysis of the yeast Elg1 protein reveals the importance of PCNA unloading in genome stability maintenance. Nucleic Acids Res 45(6):3189-3203 PMID: 28108661
- Sisakova A, et al. (2017) Role of PCNA and RFC in promoting Mus81-complex activity. BMC Biol 15(1):90 PMID: 28969641
- Tellier-Lebegue C, et al. (2017) The translesion DNA polymerases Pol ζ and Rev1 are activated independently of PCNA ubiquitination upon UV radiation in mutants of DNA polymerase δ. PLoS Genet 13(12):e1007119 PMID: 29281621
- Vasianovich Y, et al. (2017) Unloading of homologous recombination factors is required for restoring double-stranded DNA at damage repair loci. EMBO J 36(2):213-231 PMID: 27932447
- Yoshimura A, et al. (2017) The role of WRNIP1 in genome maintenance. Cell Cycle 16(6):515-521 PMID: 28118071
- Zhang J, et al. (2017) Rtt101-Mms1-Mms22 coordinates replication-coupled sister chromatid cohesion and nucleosome assembly. EMBO Rep 18(8):1294-1305 PMID: 28615292
- Boehm EM, et al. (2016) The Proliferating Cell Nuclear Antigen (PCNA)-interacting Protein (PIP) Motif of DNA Polymerase η Mediates Its Interaction with the C-terminal Domain of Rev1. J Biol Chem 291(16):8735-44 PMID: 26903512
- Boehm EM, et al. (2016) PCNA tool belts and polymerase bridges form during translesion synthesis. Nucleic Acids Res 44(17):8250-60 PMID: 27325737
- Chakraborty U, et al. (2016) A Delicate Balance Between Repair and Replication Factors Regulates Recombination Between Divergent DNA Sequences in Saccharomyces cerevisiae. Genetics 202(2):525-40 PMID: 26680658
- Fan L and Xiao W (2016) The Pol30-K196 residue plays a critical role in budding yeast DNA postreplication repair through interaction with Rad18. DNA Repair (Amst) 47:42-48 PMID: 27707542
- Halas A, et al. (2016) PCNA SUMOylation protects against PCNA polyubiquitination-mediated, Rad59-dependent, spontaneous, intrachromosomal gene conversion. Mutat Res 791-792:10-18 PMID: 27505077
- Halmai M, et al. (2016) Mutations at the Subunit Interface of Yeast Proliferating Cell Nuclear Antigen Reveal a Versatile Regulatory Domain. PLoS One 11(8):e0161307 PMID: 27537501
- Johnson C, et al. (2016) PCNA Retention on DNA into G2/M Phase Causes Genome Instability in Cells Lacking Elg1. Cell Rep 16(3):684-95 PMID: 27373149
- Keyamura K, et al. (2016) Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates. PLoS Genet 12(7):e1006136 PMID: 27390022
- Kolesar P, et al. (2016) Pro-recombination Role of Srs2 Protein Requires SUMO (Small Ubiquitin-like Modifier) but Is Independent of PCNA (Proliferating Cell Nuclear Antigen) Interaction. J Biol Chem 291(14):7594-607 PMID: 26861880
- Kupiec M (2016) Alternative clamp loaders/unloaders. FEMS Yeast Res 16(7) PMID: 27664980
- Okimoto H, et al. (2016) Conserved interaction of Ctf18-RFC with DNA polymerase ε is critical for maintenance of genome stability in Saccharomyces cerevisiae. Genes Cells 21(5):482-91 PMID: 26987677
- Stodola JL and Burgers PM (2016) Resolving individual steps of Okazaki-fragment maturation at a millisecond timescale. Nat Struct Mol Biol 23(5):402-8 PMID: 27065195
- Stodola JL, et al. (2016) Proficient Replication of the Yeast Genome by a Viral DNA Polymerase. J Biol Chem 291(22):11698-705 PMID: 27072134
- Streich FC and Lima CD (2016) Capturing a substrate in an activated RING E3/E2-SUMO complex. Nature 536(7616):304-8 PMID: 27509863
- Wyse B, et al. (2016) RRM3 regulates epigenetic conversions in Saccharomyces cerevisiae in conjunction with Chromatin Assembly Factor I. Nucleus 7(4):405-14 PMID: 27645054
- Xu X, et al. (2016) Involvement of budding yeast Rad5 in translesion DNA synthesis through physical interaction with Rev1. Nucleic Acids Res 44(11):5231-45 PMID: 27001510
- Zhang K, et al. (2016) A DNA binding winged helix domain in CAF-1 functions with PCNA to stabilize CAF-1 at replication forks. Nucleic Acids Res 44(11):5083-94 PMID: 26908650
- Zhang T, et al. (2016) Mapping ubiquitination sites of <i>S. cerevisiae</i> Mcm10. Biochem Biophys Rep 8:212-218 PMID: 28497125
- Becker JR, et al. (2015) Genetic Interactions Implicating Postreplicative Repair in Okazaki Fragment Processing. PLoS Genet 11(11):e1005659 PMID: 26545110
- Choi K, et al. (2015) Concerted and differential actions of two enzymatic domains underlie Rad5 contributions to DNA damage tolerance. Nucleic Acids Res 43(5):2666-77 PMID: 25690888
- Georgescu RE, et al. (2015) Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Elife 4:e04988 PMID: 25871847
- Haye JE and Gammie AE (2015) The Eukaryotic Mismatch Recognition Complexes Track with the Replisome during DNA Synthesis. PLoS Genet 11(12):e1005719 PMID: 26684201
- Jeffery DC, et al. (2015) CDC28 phosphorylates Cac1p and regulates the association of chromatin assembly factor I with chromatin. Cell Cycle 14(1):74-85 PMID: 25602519
- Keskin H and Storici F (2015) Defects in RNase H2 Stimulate DNA Break Repair by RNA Reverse Transcribed into cDNA. Microrna 4(2):109-16 PMID: 26456534
- Koc KN, et al. (2015) Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5'-flaps. Nucleic Acids Res 43(8):4179-90 PMID: 25813050
- Kubota T, et al. (2015) Replication-Coupled PCNA Unloading by the Elg1 Complex Occurs Genome-wide and Requires Okazaki Fragment Ligation. Cell Rep 12(5):774-87 PMID: 26212319
- Levikova M and Cejka P (2015) The Saccharomyces cerevisiae Dna2 can function as a sole nuclease in the processing of Okazaki fragments in DNA replication. Nucleic Acids Res 43(16):7888-97 PMID: 26175049
- Makarova AV and Burgers PM (2015) Eukaryotic DNA polymerase ζ. DNA Repair (Amst) 29:47-55 PMID: 25737057
- Manohar K and Acharya N (2015) Characterization of proliferating cell nuclear antigen (PCNA) from pathogenic yeast Candida albicans and its functional analyses in S. cerevisiae. BMC Microbiol 15:257 PMID: 26537947
- Marzahn MR, et al. (2015) Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. Biochim Biophys Acta 1854(1):31-8 PMID: 25450506
- Meas R, et al. (2015) The amino-terminal tails of histones H2A and H3 coordinate efficient base excision repair, DNA damage signaling and postreplication repair in Saccharomyces cerevisiae. Nucleic Acids Res 43(10):4990-5001 PMID: 25897129
- Shkedy D, et al. (2015) Regulation of Elg1 activity by phosphorylation. Cell Cycle 14(23):3689-97 PMID: 26177013
- Smith CE, et al. (2015) Activation of Saccharomyces cerevisiae Mlh1-Pms1 Endonuclease in a Reconstituted Mismatch Repair System. J Biol Chem 290(35):21580-90 PMID: 26170454
- Tong K and Skibbens RV (2015) Pds5 regulators segregate cohesion and condensation pathways in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 112(22):7021-6 PMID: 25986377
- Tsutakawa SE, et al. (2015) Structurally distinct ubiquitin- and sumo-modified PCNA: implications for their distinct roles in the DNA damage response. Structure 23(4):724-733 PMID: 25773143
- Xue C, et al. (2015) Similarities and differences between Arabidopsis PCNA1 and PCNA2 in complementing the yeast DNA damage tolerance defect. DNA Repair (Amst) 28:28-36 PMID: 25728088
- Xu X, et al. (2015) Error-free DNA-damage tolerance in Saccharomyces cerevisiae. Mutat Res Rev Mutat Res 764:43-50 PMID: 26041265
- Ball LG, et al. (2014) The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One 9(10):e109292 PMID: 25343618
- Ball LG, et al. (2014) The Rad5 helicase activity is dispensable for error-free DNA post-replication repair. DNA Repair (Amst) 16:74-83 PMID: 24674630
- Becker JR, et al. (2014) Mcm10 deficiency causes defective-replisome-induced mutagenesis and a dependency on error-free postreplicative repair. Cell Cycle 13(11):1737-48 PMID: 24674891
- Binder JK, et al. (2014) Intrinsic stability and oligomerization dynamics of DNA processivity clamps. Nucleic Acids Res 42(10):6476-86 PMID: 24728995
- Brandão LN, et al. (2014) The role of Dbf4-dependent protein kinase in DNA polymerase ζ-dependent mutagenesis in Saccharomyces cerevisiae. Genetics 197(4):1111-22 PMID: 24875188
- Chen L, et al. (2014) Enhancement of DEN-induced liver tumourigenesis in hepatocyte-specific Lass2-knockout mice coincident with upregulation of the TGF-β1-Smad4-PAI-1 axis. Oncol Rep 31(2):885-93 PMID: 24337404
- Ding L and Forsburg SL (2014) Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response. G3 (Bethesda) 4(8):1373-84 PMID: 24875629
- Dovrat D, et al. (2014) Sequential switching of binding partners on PCNA during in vitro Okazaki fragment maturation. Proc Natl Acad Sci U S A 111(39):14118-23 PMID: 25228764
- Georgescu RE, et al. (2014) Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Nat Struct Mol Biol 21(8):664-70 PMID: 24997598
- Giannattasio M, et al. (2014) Visualization of recombination-mediated damage bypass by template switching. Nat Struct Mol Biol 21(10):884-92 PMID: 25195051
- Goellner EM, et al. (2014) PCNA and Msh2-Msh6 activate an Mlh1-Pms1 endonuclease pathway required for Exo1-independent mismatch repair. Mol Cell 55(2):291-304 PMID: 24981171
- Gonzalez-Huici V, et al. (2014) DNA bending facilitates the error-free DNA damage tolerance pathway and upholds genome integrity. EMBO J 33(4):327-40 PMID: 24473148
- Hayner JN, et al. (2014) The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA. Nucleic Acids Res 42(16):10655-67 PMID: 25159615
- Makarova AV, et al. (2014) Ribonucleotide incorporation by yeast DNA polymerase ζ. DNA Repair (Amst) 18:63-7 PMID: 24674899
- Parker JL and Ulrich HD (2014) SIM-dependent enhancement of substrate-specific SUMOylation by a ubiquitin ligase in vitro. Biochem J 457(3):435-40 PMID: 24224485
- Siebler HM, et al. (2014) A novel variant of DNA polymerase ζ, Rev3ΔC, highlights differential regulation of Pol32 as a subunit of polymerase δ versus ζ in Saccharomyces cerevisiae. DNA Repair (Amst) 24:138-149 PMID: 24819597
- Yu C, et al. (2014) Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Mol Cell 56(4):551-63 PMID: 25449133
- Yu SL, et al. (2014) The PCNA binding domain of Rad2p plays a role in mutagenesis by modulating the cell cycle in response to DNA damage. DNA Repair (Amst) 16:1-10 PMID: 24674623
- Zhu Q, et al. (2014) Post-translational modifications of proliferating cell nuclear antigen: A key signal integrator for DNA damage response (Review). Oncol Lett 7(5):1363-1369 PMID: 24765138
- Amara F, et al. (2013) In vivo and in silico analysis of PCNA ubiquitylation in the activation of the Post Replication Repair pathway in S. cerevisiae. BMC Syst Biol 7:24 PMID: 23514624
- Bose P, et al. (2013) ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis 4(9):e788 PMID: 24008732
- Bose P, et al. (2013) ING1 induces apoptosis through direct effects at the mitochondria. Cell Death Dis 4:e837
- Burgess RC, et al. (2013) The PCNA interaction protein box sequence in Rad54 is an integral part of its ATPase domain and is required for efficient DNA repair and recombination. PLoS One 8(12):e82630 PMID: 24376557
- Burkovics P, et al. (2013) Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 32(5):742-55 PMID: 23395907
- Crespan E, et al. (2013) Human DNA polymerase β, but not λ, can bypass a 2-deoxyribonolactone lesion together with proliferating cell nuclear antigen. ACS Chem Biol 8(2):336-44 PMID: 23101935
- Dieckman LM and Washington MT (2013) PCNA trimer instability inhibits translesion synthesis by DNA polymerase η and by DNA polymerase δ. DNA Repair (Amst) 12(5):367-76 PMID: 23506842
- Dieckman LM, et al. (2013) Distinct structural alterations in proliferating cell nuclear antigen block DNA mismatch repair. Biochemistry 52(33):5611-9 PMID: 23869605
- Gallego-Sánchez A, et al. (2013) Analysis of the tolerance to DNA alkylating damage in MEC1 and RAD53 checkpoint mutants of Saccharomyces cerevisiae. PLoS One 8(11):e81108 PMID: 24260543
- Gazy I, et al. (2013) A genetic screen for high copy number suppressors of the synthetic lethality between elg1Δ and srs2Δ in yeast. G3 (Bethesda) 3(5):917-26 PMID: 23704284
- Karras GI, et al. (2013) Noncanonical role of the 9-1-1 clamp in the error-free DNA damage tolerance pathway. Mol Cell 49(3):536-46 PMID: 23260657
- Kozmin SG and Jinks-Robertson S (2013) The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells. Genetics 193(3):803-17 PMID: 23307894
- Kubota T, et al. (2013) Is PCNA unloading the central function of the Elg1/ATAD5 replication factor C-like complex? Cell Cycle 12(16):2570-9 PMID: 23907118
- Kubota T, et al. (2013) The Elg1 replication factor C-like complex functions in PCNA unloading during DNA replication. Mol Cell 50(2):273-80 PMID: 23499004
- Lujan SA, et al. (2013) Ribonucleotides are signals for mismatch repair of leading-strand replication errors. Mol Cell 50(3):437-43 PMID: 23603118
- Miura T, et al. (2013) Putative antirecombinase Srs2 DNA helicase promotes noncrossover homologous recombination avoiding loss of heterozygosity. Proc Natl Acad Sci U S A 110(40):16067-72 PMID: 24043837
- Nguyen HD, et al. (2013) Unligated Okazaki Fragments Induce PCNA Ubiquitination and a Requirement for Rad59-Dependent Replication Fork Progression. PLoS One 8(6):e66379 PMID: 23824283
- Nguyen PV, et al. (2013) Identifying conserved protein complexes between species by constructing interolog networks. BMC Bioinformatics 14 Suppl 16(Suppl 16):S8 PMID: 24564762
- Pustovalova Y, et al. (2013) NMR mapping of PCNA interaction with translesion synthesis DNA polymerase Rev1 mediated by Rev1-BRCT domain. J Mol Biol 425(17):3091-105 PMID: 23747975
- Qin Z, et al. (2013) DNA-damage tolerance mediated by PCNA*Ub fusions in human cells is dependent on Rev1 but not Polη. Nucleic Acids Res 41(15):7356-69 PMID: 23761444
- Singh S, et al. (2013) Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway. Cell Cycle 12(10):1625-36 PMID: 23624835
- Strzalka W, et al. (2013) RAD5a ubiquitin ligase is involved in ubiquitination of Arabidopsis thaliana proliferating cell nuclear antigen. J Exp Bot 64(4):859-69 PMID: 23314815
- Ulrich HD (2013) New insights into replication clamp unloading. J Mol Biol 425(23):4727-32 PMID: 23688817
- Xu X, et al. (2013) The yeast Shu complex utilizes homologous recombination machinery for error-free lesion bypass via physical interaction with a Rad51 paralogue. PLoS One 8(12):e81371 PMID: 24339919
- Zhang XP, et al. (2013) A conserved sequence extending motif III of the motor domain in the Snf2-family DNA translocase Rad54 is critical for ATPase activity. PLoS One 8(12):e82184 PMID: 24358152
- Anand RP, et al. (2012) Overcoming natural replication barriers: differential helicase requirements. Nucleic Acids Res 40(3):1091-105 PMID: 21984413
- Armstrong AA, et al. (2012) Recognition of SUMO-modified PCNA requires tandem receptor motifs in Srs2. Nature 483(7387):59-63 PMID: 22382979
- Aves SJ, et al. (2012) Evolutionary diversification of eukaryotic DNA replication machinery. Subcell Biochem 62:19-35 PMID: 22918578
- Crevel G, et al. (2012) Drosophila RecQ4 is directly involved in both DNA replication and the response to UV damage in S2 cells. PLoS One 7(11):e49505 PMID: 23166690
- Davidson MB, et al. (2012) Endogenous DNA replication stress results in expansion of dNTP pools and a mutator phenotype. EMBO J 31(4):895-907 PMID: 22234187
- Davies AA and Ulrich HD (2012) Detection of PCNA modifications in Saccharomyces cerevisiae. Methods Mol Biol 920:543-67 PMID: 22941627
- Gali H, et al. (2012) Role of SUMO modification of human PCNA at stalled replication fork. Nucleic Acids Res 40(13):6049-59 PMID: 22457066
- Gallego-Sánchez A, et al. (2012) Reversal of PCNA ubiquitylation by Ubp10 in Saccharomyces cerevisiae. PLoS Genet 8(7):e1002826 PMID: 22829782
- Gazy I and Kupiec M (2012) The importance of being modified: PCNA modification and DNA damage response. Cell Cycle 11(14):2620-3 PMID: 22732495
- Haas J, et al. (2012) Physical links between the nuclear envelope protein Mps3, three alternate replication factor C complexes, and a variant histone in Saccharomyces cerevisiae. DNA Cell Biol 31(6):917-24 PMID: 22276573
- Isoz I, et al. (2012) The C-terminus of Dpb2 is required for interaction with Pol2 and for cell viability. Nucleic Acids Res 40(22):11545-53 PMID: 23034803
- Kato D, et al. (2012) Phosphorylation of human INO80 is involved in DNA damage tolerance. Biochem Biophys Res Commun 417(1):433-8 PMID: 22166198
- Kolesar P, et al. (2012) Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res 40(16):7831-43 PMID: 22705796
- Lazzaro F, et al. (2012) RNase H and postreplication repair protect cells from ribonucleotides incorporated in DNA. Mol Cell 45(1):99-110 PMID: 22244334
- Makarova AV, et al. (2012) A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis. Nucleic Acids Res 40(22):11618-26 PMID: 23066099
- Niimi A, et al. (2012) A role for chromatin remodellers in replication of damaged DNA. Nucleic Acids Res 40(15):7393-403 PMID: 22638582
- Parker JL and Ulrich HD (2012) In vitro PCNA modification assays. Methods Mol Biol 920:569-89 PMID: 22941628
- Parker JL and Ulrich HD (2012) A SUMO-interacting motif activates budding yeast ubiquitin ligase Rad18 towards SUMO-modified PCNA. Nucleic Acids Res 40(22):11380-8 PMID: 23034805
- Rudra S and Skibbens RV (2012) Sister chromatid cohesion establishment occurs in concert with lagging strand synthesis. Cell Cycle 11(11):2114-21 PMID: 22592531
- Sakato M, et al. (2012) ATP binding and hydrolysis-driven rate-determining events in the RFC-catalyzed PCNA clamp loading reaction. J Mol Biol 416(2):176-91 PMID: 22197378
- Sakato M, et al. (2012) A central swivel point in the RFC clamp loader controls PCNA opening and loading on DNA. J Mol Biol 416(2):163-75 PMID: 22197374
- Saugar I, et al. (2012) The genome maintenance factor Mgs1 is targeted to sites of replication stress by ubiquitylated PCNA. Nucleic Acids Res 40(1):245-57 PMID: 21911365
- Shchebet A, et al. (2012) Phosphorylation by cyclin-dependent kinase-9 controls ubiquitin-conjugating enzyme-2A function. Cell Cycle 11(11):2122-7 PMID: 22592529
- Sparks JL, et al. (2012) RNase H2-initiated ribonucleotide excision repair. Mol Cell 47(6):980-6 PMID: 22864116
- Thompson JA, et al. (2012) Replication factor C is a more effective proliferating cell nuclear antigen (PCNA) opener than the checkpoint clamp loader, Rad24-RFC. J Biol Chem 287(3):2203-9 PMID: 22115746
- Yu Y, et al. (2012) Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol Cell 46(1):7-17 PMID: 22387026
- Zamir L, et al. (2012) Tight coevolution of proliferating cell nuclear antigen (PCNA)-partner interaction networks in fungi leads to interspecies network incompatibility. Proc Natl Acad Sci U S A 109(7):E406-14 PMID: 22308326
- Zang Y, et al. (2012) Rice UBC13, a candidate housekeeping gene, is required for K63-linked polyubiquitination and tolerance to DNA damage. Rice (N Y) 5(1):24 PMID: 27234244
- Zhou Y and Hingorani MM (2012) Impact of individual proliferating cell nuclear antigen-DNA contacts on clamp loading and function on DNA. J Biol Chem 287(42):35370-35381 PMID: 22902629
- Acharya N, et al. (2011) PCNA binding domains in all three subunits of yeast DNA polymerase δ modulate its function in DNA replication. Proc Natl Acad Sci U S A 108(44):17927-32 PMID: 22003126
- Bell DW, et al. (2011) Predisposition to cancer caused by genetic and functional defects of mammalian Atad5. PLoS Genet 7(8):e1002245 PMID: 21901109
- Cal-Bakowska M, et al. (2011) The Swi2-Snf2-like protein Uls1 is involved in replication stress response. Nucleic Acids Res 39(20):8765-77 PMID: 21764775
- Chen C, et al. (2011) Elongator complex influences telomeric gene silencing and DNA damage response by its role in wobble uridine tRNA modification. PLoS Genet 7(9):e1002258 PMID: 21912530
- De Biasio A, et al. (2011) Reduced stability and increased dynamics in the human proliferating cell nuclear antigen (PCNA) relative to the yeast homolog. PLoS One 6(2):e16600 PMID: 21364740
- Freudenthal BD, et al. (2011) Crystal structure of SUMO-modified proliferating cell nuclear antigen. J Mol Biol 406(1):9-17 PMID: 21167178
- Halas A, et al. (2011) The roles of PCNA SUMOylation, Mms2-Ubc13 and Rad5 in translesion DNA synthesis in Saccharomyces cerevisiae. Mol Microbiol 80(3):786-97 PMID: 21362066
- Kubota T, et al. (2011) Quantitative proteomic analysis of chromatin reveals that Ctf18 acts in the DNA replication checkpoint. Mol Cell Proteomics 10(7):M110.005561 PMID: 21505101
- Lehmann AR (2011) Ubiquitin-family modifications in the replication of DNA damage. FEBS Lett 585(18):2772-9 PMID: 21704031
- León Ortiz AM, et al. (2011) Srs2 overexpression reveals a helicase-independent role at replication forks that requires diverse cell functions. DNA Repair (Amst) 10(5):506-17 PMID: 21459050
- Minocha N, et al. (2011) Characterization of Leishmania donovani MCM4: expression patterns and interaction with PCNA. PLoS One 6(7):e23107 PMID: 21829589
- Netz DJ, et al. (2011) Eukaryotic DNA polymerases require an iron-sulfur cluster for the formation of active complexes. Nat Chem Biol 8(1):125-32 PMID: 22119860
- Parnas O, et al. (2011) Elg1, the major subunit of an alternative RFC complex, interacts with SUMO-processing proteins. Cell Cycle 10(17):2894-903 PMID: 21869594
- Puddu F, et al. (2011) Sensing of replication stress and Mec1 activation act through two independent pathways involving the 9-1-1 complex and DNA polymerase ε. PLoS Genet 7(3):e1002022 PMID: 21436894
- Sharma NM, et al. (2011) The non-canonical protein binding site at the monomer-monomer interface of yeast proliferating cell nuclear antigen (PCNA) regulates the Rev1-PCNA interaction and Polζ/Rev1-dependent translesion DNA synthesis. J Biol Chem 286(38):33557-66 PMID: 21799021
- Strzalka W and Ziemienowicz A (2011) Proliferating cell nuclear antigen (PCNA): a key factor in DNA replication and cell cycle regulation. Ann Bot 107(7):1127-40 PMID: 21169293
- Zhang W, et al. (2011) Roles of sequential ubiquitination of PCNA in DNA-damage tolerance. FEBS Lett 585(18):2786-94 PMID: 21536034
- Adelman JL, et al. (2010) The mechanical properties of PCNA: implications for the loading and function of a DNA sliding clamp. Biophys J 98(12):3062-9 PMID: 20550919
- Bomar MG, et al. (2010) Unconventional ubiquitin recognition by the ubiquitin-binding motif within the Y family DNA polymerases iota and Rev1. Mol Cell 37(3):408-17 PMID: 20159559
- Conde F, et al. (2010) Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae. DNA Repair (Amst) 9(10):1038-49 PMID: 20674515
- Coulon S, et al. (2010) Rad8Rad5/Mms2-Ubc13 ubiquitin ligase complex controls translesion synthesis in fission yeast. EMBO J 29(12):2048-58 PMID: 20453833
- Daigaku Y, et al. (2010) Ubiquitin-dependent DNA damage bypass is separable from genome replication. Nature 465(7300):951-5 PMID: 20453836
- Das-Bradoo S, et al. (2010) Damage-specific modification of PCNA. Cell Cycle 9(18):3674-9 PMID: 20930510
- Das-Bradoo S, et al. (2010) Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol 12(1):74-9; sup pp 1-20 PMID: 20010813
- Davies AA, et al. (2010) Ubiquitylation of the 9-1-1 checkpoint clamp is independent of rad6-rad18 and DNA damage. Cell 141(6):1080-7 PMID: 20550940
- Gallego-Sánchez A, et al. (2010) Control of PCNA deubiquitylation in yeast. Biochem Soc Trans 38(Pt 1):104-9 PMID: 20074044
- Henry RA, et al. (2010) Components of the secondary pathway stimulate the primary pathway of eukaryotic Okazaki fragment processing. J Biol Chem 285(37):28496-505 PMID: 20628185
- Hishida T, et al. (2010) Srs2 plays a critical role in reversible G2 arrest upon chronic and low doses of UV irradiation via two distinct homologous recombination-dependent mechanisms in postreplication repair-deficient cells. Mol Cell Biol 30(20):4840-50 PMID: 20713444
- Karras GI and Jentsch S (2010) The RAD6 DNA damage tolerance pathway operates uncoupled from the replication fork and is functional beyond S phase. Cell 141(2):255-67 PMID: 20403322
- Kumar R, et al. (2010) Stepwise loading of yeast clamp revealed by ensemble and single-molecule studies. Proc Natl Acad Sci U S A 107(46):19736-41 PMID: 21041673
- Lydeard JR, et al. (2010) Break-induced replication requires all essential DNA replication factors except those specific for pre-RC assembly. Genes Dev 24(11):1133-44 PMID: 20516198
- McNally R, et al. (2010) Analysis of the role of PCNA-DNA contacts during clamp loading. BMC Struct Biol 10:3 PMID: 20113510
- Minca EC and Kowalski D (2010) Multiple Rad5 activities mediate sister chromatid recombination to bypass DNA damage at stalled replication forks. Mol Cell 38(5):649-61 PMID: 20541998
- Parnas O, et al. (2010) Elg1, an alternative subunit of the RFC clamp loader, preferentially interacts with SUMOylated PCNA. EMBO J 29(15):2611-22 PMID: 20571511
- Pastushok L, et al. (2010) Constitutive fusion of ubiquitin to PCNA provides DNA damage tolerance independent of translesion polymerase activities. Nucleic Acids Res 38(15):5047-58 PMID: 20385585
- Putnam CD, et al. (2010) Post-replication repair suppresses duplication-mediated genome instability. PLoS Genet 6(5):e1000933 PMID: 20463880
- Saponaro M, et al. (2010) Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genet 6(2):e1000858 PMID: 20195513
- Shaheen M, et al. (2010) The Role of PCNA Posttranslational Modifications in Translesion Synthesis. J Nucleic Acids 2010 PMID: 20847899
- Tainer JA, et al. (2010) Recognition of the ring-opened state of proliferating cell nuclear antigen by replication factor C promotes eukaryotic clamp-loading. J Am Chem Soc 132(21):7372-8 PMID: 20455582
- Ting L, et al. (2010) RAD18 lives a double life: Its implication in DNA double-strand break repair. DNA Repair (Amst) 9(12):1241-8 PMID: 20971043
- Zhao S and Ulrich HD (2010) Distinct consequences of posttranslational modification by linear versus K63-linked polyubiquitin chains. Proc Natl Acad Sci U S A 107(17):7704-9 PMID: 20385835
- Barlow JH and Rothstein R (2009) Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase. EMBO J 28(8):1121-30 PMID: 19262568
- Carlile CM, et al. (2009) Synthesis of free and proliferating cell nuclear antigen-bound polyubiquitin chains by the RING E3 ubiquitin ligase Rad5. J Biol Chem 284(43):29326-34 PMID: 19706603
- Chen S, et al. (2009) Mechanism of ATP-driven PCNA clamp loading by S. cerevisiae RFC. J Mol Biol 388(3):431-42 PMID: 19285992
- Chon H, et al. (2009) Contributions of the two accessory subunits, RNASEH2B and RNASEH2C, to the activity and properties of the human RNase H2 complex. Nucleic Acids Res 37(1):96-110 PMID: 19015152
- Falbo KB, et al. (2009) Involvement of a chromatin remodeling complex in damage tolerance during DNA replication. Nat Struct Mol Biol 16(11):1167-72 PMID: 19855395
- Freudenthal BD, et al. (2009) A charged residue at the subunit interface of PCNA promotes trimer formation by destabilizing alternate subunit interactions. Acta Crystallogr D Biol Crystallogr 65(Pt 6):560-6 PMID: 19465770
- Gómez-González B, et al. (2009) The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 29(19):5203-13 PMID: 19651896
- Gupta A, et al. (2009) Functional dissection of the catalytic carboxyl-terminal domain of origin recognition complex subunit 1 (PfORC1) of the human malaria parasite Plasmodium falciparum. Eukaryot Cell 8(9):1341-51 PMID: 19633266
- Hirano Y, et al. (2009) Role of budding yeast Rad18 in repair of HO-induced double-strand breaks. DNA Repair (Amst) 8(1):51-9 PMID: 18824138
- Karanja KK and Livingston DM (2009) C-terminal flap endonuclease (rad27) mutations: lethal interactions with a DNA ligase I mutation (cdc9-p) and suppression by proliferating cell nuclear antigen (POL30) in Saccharomyces cerevisiae. Genetics 183(1):63-78 PMID: 19596905
- Kats ES, et al. (2009) The Saccharomyces cerevisiae Rad6 postreplication repair and Siz1/Srs2 homologous recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Mol Cell Biol 29(19):5226-37 PMID: 19635810
- Li Q, et al. (2009) The elongator complex interacts with PCNA and modulates transcriptional silencing and sensitivity to DNA damage agents. PLoS Genet 5(10):e1000684 PMID: 19834596
- Li X, et al. (2009) PCNA is required for initiation of recombination-associated DNA synthesis by DNA polymerase delta. Mol Cell 36(4):704-13 PMID: 19941829
- Ma W, et al. (2009) The transition of closely opposed lesions to double-strand breaks during long-patch base excision repair is prevented by the coordinated action of DNA polymerase delta and Rad27/Fen1. Mol Cell Biol 29(5):1212-21 PMID: 19075004
- McCulloch SD, et al. (2009) The efficiency and fidelity of 8-oxo-guanine bypass by DNA polymerases delta and eta. Nucleic Acids Res 37(9):2830-40 PMID: 19282446
- Parker JL and Ulrich HD (2009) Mechanistic analysis of PCNA poly-ubiquitylation by the ubiquitin protein ligases Rad18 and Rad5. EMBO J 28(23):3657-66 PMID: 19851286
- Suzuki M, et al. (2009) PCNA mono-ubiquitination and activation of translesion DNA polymerases by DNA polymerase {alpha}. J Biochem 146(1):13-21 PMID: 19279190
- Ulrich HD (2009) Regulating post-translational modifications of the eukaryotic replication clamp PCNA. DNA Repair (Amst) 8(4):461-9 PMID: 19217833
- Ulrich HD and Davies AA (2009) In vivo detection and characterization of sumoylation targets in Saccharomyces cerevisiae. Methods Mol Biol 497:81-103 PMID: 19107412
- van der Kemp PA, et al. (2009) PCNA monoubiquitylation and DNA polymerase eta ubiquitin-binding domain are required to prevent 8-oxoguanine-induced mutagenesis in Saccharomyces cerevisiae. Nucleic Acids Res 37(8):2549-59 PMID: 19264809
- Yunus AA and Lima CD (2009) Structure of the Siz/PIAS SUMO E3 ligase Siz1 and determinants required for SUMO modification of PCNA. Mol Cell 35(5):669-82 PMID: 19748360
- Zhao Q, et al. (2009) Modulation of nucleotide excision repair by mammalian SWI/SNF chromatin-remodeling complex. J Biol Chem 284(44):30424-32 PMID: 19740755
- Acharya N, et al. (2008) Roles of PCNA-binding and ubiquitin-binding domains in human DNA polymerase eta in translesion DNA synthesis. Proc Natl Acad Sci U S A 105(46):17724-9 PMID: 19001268
- Andersen PL, et al. (2008) Eukaryotic DNA damage tolerance and translesion synthesis through covalent modifications of PCNA. Cell Res 18(1):162-73 PMID: 18157158
- Anderson HJ, et al. (2008) Arabidopsis thaliana Y-family DNA polymerase eta catalyses translesion synthesis and interacts functionally with PCNA2. Plant J 55(6):895-908 PMID: 18494853
- Bonilla CY, et al. (2008) Colocalization of sensors is sufficient to activate the DNA damage checkpoint in the absence of damage. Mol Cell 30(3):267-76 PMID: 18471973
- Branzei D, et al. (2008) SUMOylation regulates Rad18-mediated template switch. Nature 456(7224):915-20 PMID: 19092928
- Cardone JM, et al. (2008) DNA repair by polymerase delta in Saccharomyces cerevisiae is not controlled by the proliferating cell nuclear antigen-like Rad17/Mec3/Ddc1 complex. Genet Mol Res 7(1):127-32 PMID: 18273828
- Celic I, et al. (2008) Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179(4):1769-84 PMID: 18579506
- Davies AA, et al. (2008) Activation of ubiquitin-dependent DNA damage bypass is mediated by replication protein a. Mol Cell 29(5):625-36 PMID: 18342608
- Dionne I, et al. (2008) On the mechanism of loading the PCNA sliding clamp by RFC. Mol Microbiol 68(1):216-22 PMID: 18312273
- Freudenthal BD, et al. (2008) Structure of a mutant form of proliferating cell nuclear antigen that blocks translesion DNA synthesis. Biochemistry 47(50):13354-61 PMID: 19053247
- Fu Y, et al. (2008) Rad6-Rad18 mediates a eukaryotic SOS response by ubiquitinating the 9-1-1 checkpoint clamp. Cell 133(4):601-11 PMID: 18485869
- Gupta A, et al. (2008) Plasmodium falciparum origin recognition complex subunit 5: functional characterization and role in DNA replication foci formation. Mol Microbiol 69(3):646-65 PMID: 18554328
- Hishiki A, et al. (2008) Crystallographic study of G178S mutant of human proliferating cell nuclear antigen. Acta Crystallogr Sect F Struct Biol Cryst Commun 64(Pt 9):819-21 PMID: 18765913
- Huttner D and Ulrich HD (2008) Cooperation of replication protein A with the ubiquitin ligase Rad18 in DNA damage bypass. Cell Cycle 7(23):3629-33 PMID: 19029798
- Ishii S, et al. (2008) Interaction between Lim15/Dmc1 and the homologue of the large subunit of CAF-1: a molecular link between recombination and chromatin assembly during meiosis. FEBS J 275(9):2032-41 PMID: 18355319
- Kakar S, et al. (2008) RAD18 signals DNA polymerase IOTA to stalled replication forks in cells entering S-phase with DNA damage. Adv Exp Med Biol 614:137-43 PMID: 18290323
- Laguri C, et al. (2008) Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47(23):6199-207 PMID: 18484749
- Langston LD and O'Donnell M (2008) DNA polymerase delta is highly processive with proliferating cell nuclear antigen and undergoes collision release upon completing DNA. J Biol Chem 283(43):29522-31 PMID: 18635534
- Le Breton C, et al. (2008) Srs2 removes deadly recombination intermediates independently of its interaction with SUMO-modified PCNA. Nucleic Acids Res 36(15):4964-74 PMID: 18658248
- Lee KY and Myung K (2008) PCNA modifications for regulation of post-replication repair pathways. Mol Cells 26(1):5-11 PMID: 18525240
- Miller A, et al. (2008) Proliferating cell nuclear antigen and ASF1 modulate silent chromatin in Saccharomyces cerevisiae via lysine 56 on histone H3. Genetics 179(2):793-809 PMID: 18558650
- Moertl S, et al. (2008) Regulation of double-stranded DNA gap repair by the RAD6 pathway. DNA Repair (Amst) 7(11):1893-906 PMID: 18722556
- Moe SE, et al. (2008) Huntingtin triplet-repeat locus is stable under long-term Fen1 knockdown in human cells. J Neurosci Methods 171(2):233-8 PMID: 18466979
- Motegi A, et al. (2008) Polyubiquitination of proliferating cell nuclear antigen by HLTF and SHPRH prevents genomic instability from stalled replication forks. Proc Natl Acad Sci U S A 105(34):12411-6 PMID: 18719106
- Myung K and Smith S (2008) The RAD5-dependent postreplication repair pathway is important to suppress gross chromosomal rearrangements. J Natl Cancer Inst Monogr 12-5 PMID: 18647995
- Nunes E, et al. (2008) HDF1 and RAD17 genes are involved in DNA double-strand break repair in stationary phase Saccharomyces cerevisiae. J Biol Phys 34(1-2):63-71 PMID: 19669493
- Pagès V, et al. (2008) Requirement of Rad5 for DNA polymerase zeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 180(1):73-82 PMID: 18757916
- Parker JL, et al. (2008) SUMO modification of PCNA is controlled by DNA. EMBO J 27(18):2422-31 PMID: 18701921
- Sommer D, et al. (2008) Partial reconstitution of DNA large loop repair with purified proteins from Saccharomyces cerevisiae. Nucleic Acids Res 36(14):4699-707 PMID: 18628298
- Spicakova T, et al. (2008) A role for Lsmlp in response to ultraviolet-radiation damage in Saccharomyces cerevisiae. Radiat Res 170(4):411-21 PMID: 19024647
- Stone JE, et al. (2008) Role of proliferating cell nuclear antigen interactions in the mismatch repair-dependent processing of mitotic and meiotic recombination intermediates in yeast. Genetics 178(3):1221-36 PMID: 18245822
- Warren EM, et al. (2008) Structural basis for DNA binding by replication initiator Mcm10. Structure 16(12):1892-901 PMID: 19081065
- Windecker H and Ulrich HD (2008) Architecture and assembly of poly-SUMO chains on PCNA in Saccharomyces cerevisiae. J Mol Biol 376(1):221-31 PMID: 18155241
- Yang Y, et al. (2008) Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet 4(11):e1000264 PMID: 19023402
- Zhuang Z, et al. (2008) Regulation of polymerase exchange between Poleta and Poldelta by monoubiquitination of PCNA and the movement of DNA polymerase holoenzyme. Proc Natl Acad Sci U S A 105(14):5361-6 PMID: 18385374
- Abdulovic AL, et al. (2007) Identification of a strand-related bias in the PCNA-mediated bypass of spontaneous lesions by yeast Poleta. DNA Repair (Amst) 6(9):1307-18 PMID: 17442629
- Acharya N, et al. (2007) Mutations in the ubiquitin binding UBZ motif of DNA polymerase eta do not impair its function in translesion synthesis during replication. Mol Cell Biol 27(20):7266-72 PMID: 17709386
- Banerjee S, et al. (2007) Suppression of gross chromosomal rearrangements by a new alternative replication factor C complex. Biochem Biophys Res Commun 362(3):546-9 PMID: 17689491
- Chilkova O, et al. (2007) The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Nucleic Acids Res 35(19):6588-97 PMID: 17905813
- Chiolo I, et al. (2007) The human F-Box DNA helicase FBH1 faces Saccharomyces cerevisiae Srs2 and postreplication repair pathway roles. Mol Cell Biol 27(21):7439-50 PMID: 17724085
- Clark AB, et al. (2007) Multiple functions for the N-terminal region of Msh6. Nucleic Acids Res 35(12):4114-23 PMID: 17567610
- Daee DL, et al. (2007) Postreplication repair inhibits CAG.CTG repeat expansions in Saccharomyces cerevisiae. Mol Cell Biol 27(1):102-10 PMID: 17060452
- Kadyrov FA, et al. (2007) Saccharomyces cerevisiae MutLalpha is a mismatch repair endonuclease. J Biol Chem 282(51):37181-90 PMID: 17951253
- Kawabata T, et al. (2007) Neurosprora crassa RAD5 homologue, mus-41, inactivation results in higher sensitivity to mutagens but has little effect on PCNA-ubiquitylation in response to UV-irradiation. Curr Genet 52(3-4):125-35 PMID: 17703305
- McCulloch SD, et al. (2007) Effects of accessory proteins on the bypass of a cis-syn thymine-thymine dimer by Saccharomyces cerevisiae DNA polymerase eta. Biochemistry 46(30):8888-96 PMID: 17608453
- Ogiwara H, et al. (2007) The INO80 chromatin remodeling complex functions in sister chromatid cohesion. Cell Cycle 6(9):1090-5 PMID: 17471029
- Parker JL, et al. (2007) Contributions of ubiquitin- and PCNA-binding domains to the activity of Polymerase eta in Saccharomyces cerevisiae. Nucleic Acids Res 35(3):881-9 PMID: 17251197
- Shell SS, et al. (2007) The N terminus of Saccharomyces cerevisiae Msh6 is an unstructured tether to PCNA. Mol Cell 26(4):565-78 PMID: 17531814
- Singh VK, et al. (2007) Tri-cistronic cloning, overexpression and purification of human Rad9, Rad1, Hus1 protein complex. Protein Expr Purif 54(2):204-11 PMID: 17493829
- Skibbens RV, et al. (2007) Fork it over: the cohesion establishment factor Ctf7p and DNA replication. J Cell Sci 120(Pt 15):2471-7 PMID: 17646671
- Ulrich HD (2007) Conservation of DNA damage tolerance pathways from yeast to humans. Biochem Soc Trans 35(Pt 5):1334-7 PMID: 17956345
- Ulrich HD (2007) PCNASUMO and Srs2: a model SUMO substrate-effector pair. Biochem Soc Trans 35(Pt 6):1385-8 PMID: 18031227
- Vijayakumar S, et al. (2007) The C-terminal domain of yeast PCNA is required for physical and functional interactions with Cdc9 DNA ligase. Nucleic Acids Res 35(5):1624-37 PMID: 17308348
- Wood A, et al. (2007) A ubiquitin-binding motif in the translesion DNA polymerase Rev1 mediates its essential functional interaction with ubiquitinated proliferating cell nuclear antigen in response to DNA damage. J Biol Chem 282(28):20256-63 PMID: 17517887
- Arakawa H, et al. (2006) A role for PCNA ubiquitination in immunoglobulin hypermutation. PLoS Biol 4(11):e366 PMID: 17105346
- Branzei D, et al. (2006) Ubc9- and mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127(3):509-22 PMID: 17081974
- Bylund GO, et al. (2006) Overproduction and purification of RFC-related clamp loaders and PCNA-related clamps from Saccharomyces cerevisiae. Methods Enzymol 409:1-11 PMID: 16793392
- Chen CC, et al. (2006) Genetic analysis of ionizing radiation-induced mutagenesis in Saccharomyces cerevisiae reveals TransLesion Synthesis (TLS) independent of PCNA K164 SUMOylation and ubiquitination. DNA Repair (Amst) 5(12):1475-88 PMID: 16990054
- Das-Bradoo S, et al. (2006) Interaction between PCNA and diubiquitinated Mcm10 is essential for cell growth in budding yeast. Mol Cell Biol 26(13):4806-17 PMID: 16782870
- Fortune JM, et al. (2006) RPA and PCNA suppress formation of large deletion errors by yeast DNA polymerase delta. Nucleic Acids Res 34(16):4335-41 PMID: 16936322
- Frampton J, et al. (2006) Postreplication repair and PCNA modification in Schizosaccharomyces pombe. Mol Biol Cell 17(7):2976-85 PMID: 16641370
- Guo C, et al. (2006) Ubiquitin-binding motifs in REV1 protein are required for its role in the tolerance of DNA damage. Mol Cell Biol 26(23):8892-900 PMID: 16982685
- Guo C, et al. (2006) REV1 protein interacts with PCNA: significance of the REV1 BRCT domain in vitro and in vivo. Mol Cell 23(2):265-71 PMID: 16857592
- Haracska L, et al. (2006) Ubiquitylation of yeast proliferating cell nuclear antigen and its implications for translesion DNA synthesis. Proc Natl Acad Sci U S A 103(17):6477-82 PMID: 16611731
- Hirano Y and Sugimoto K (2006) ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break. Curr Biol 16(6):586-90 PMID: 16546083
- Hishida T, et al. (2006) Functional and physical interaction of yeast Mgs1 with PCNA: impact on RAD6-dependent DNA damage tolerance. Mol Cell Biol 26(14):5509-17 PMID: 16809783
- Lee SD and Alani E (2006) Analysis of interactions between mismatch repair initiation factors and the replication processivity factor PCNA. J Mol Biol 355(2):175-84 PMID: 16303135
- Lis ET and Romesberg FE (2006) Role of Doa1 in the Saccharomyces cerevisiae DNA damage response. Mol Cell Biol 26(11):4122-33 PMID: 16705165
- Majka J, et al. (2006) The checkpoint clamp activates Mec1 kinase during initiation of the DNA damage checkpoint. Mol Cell 24(6):891-901 PMID: 17189191
- McHugh PJ and Sarkar S (2006) DNA interstrand cross-link repair in the cell cycle: a critical role for polymerase zeta in G1 phase. Cell Cycle 5(10):1044-7 PMID: 16687932
- McIntyre J, et al. (2006) Analysis of the spontaneous mutator phenotype associated with 20S proteasome deficiency in S. cerevisiae. Mutat Res 593(1-2):153-63 PMID: 16095633
- Moldovan GL, et al. (2006) PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell 23(5):723-32 PMID: 16934511
- Motegi A, et al. (2006) Regulation of gross chromosomal rearrangements by ubiquitin and SUMO ligases in Saccharomyces cerevisiae. Mol Cell Biol 26(4):1424-33 PMID: 16449653
- Motegi A, et al. (2006) Human SHPRH suppresses genomic instability through proliferating cell nuclear antigen polyubiquitination. J Cell Biol 175(5):703-8 PMID: 17130289
- Northam MR, et al. (2006) A novel function of DNA polymerase zeta regulated by PCNA. EMBO J 25(18):4316-25 PMID: 16957771
- Reindle A, et al. (2006) Multiple domains in Siz SUMO ligases contribute to substrate selectivity. J Cell Sci 119(Pt 22):4749-57 PMID: 17077124
- Robert T, et al. (2006) Mrc1 and Srs2 are major actors in the regulation of spontaneous crossover. EMBO J 25(12):2837-46 PMID: 16724109
- Rossi ML and Bambara RA (2006) Reconstituted Okazaki fragment processing indicates two pathways of primer removal. J Biol Chem 281(36):26051-61 PMID: 16837458
- Sarkar S, et al. (2006) DNA interstrand crosslink repair during G1 involves nucleotide excision repair and DNA polymerase zeta. EMBO J 25(6):1285-94 PMID: 16482220
- Sasaki T, et al. (2006) Progressive loss of SIRT1 with cell cycle withdrawal. Aging Cell 5(5):413-22 PMID: 16939484
- Shiraki K, et al. (2006) Cellular apoptosis susceptibility protein and proliferation in human hepatocellular carcinoma. Int J Mol Med 18(1):77-81 PMID: 16786158
- Simpson LJ, et al. (2006) RAD18-independent ubiquitination of proliferating-cell nuclear antigen in the avian cell line DT40. EMBO Rep 7(9):927-32 PMID: 16888649
- Szüts D, et al. (2006) Role for RAD18 in homologous recombination in DT40 cells. Mol Cell Biol 26(21):8032-41 PMID: 16923963
- Vijeh Motlagh ND, et al. (2006) Mgs1 and Rad18/Rad5/Mms2 are required for survival of Saccharomyces cerevisiae mutants with novel temperature/cold sensitive alleles of the DNA polymerase delta subunit, Pol31. DNA Repair (Amst) 5(12):1459-74 PMID: 16949354
- Watts FZ (2006) Sumoylation of PCNA: Wrestling with recombination at stalled replication forks. DNA Repair (Amst) 5(3):399-403 PMID: 16368276
- Wu HY and Burgess SM (2006) Two distinct surveillance mechanisms monitor meiotic chromosome metabolism in budding yeast. Curr Biol 16(24):2473-9 PMID: 17174924
- Yao NY, et al. (2006) Mechanism of proliferating cell nuclear antigen clamp opening by replication factor C. J Biol Chem 281(25):17528-17539 PMID: 16608854
- Zhang H, et al. (2006) The Saccharomyces cerevisiae rev6-1 mutation, which inhibits both the lesion bypass and the recombination mode of DNA damage tolerance, is an allele of POL30, encoding proliferating cell nuclear antigen. Genetics 173(4):1983-9 PMID: 16783012
- Zhong X, et al. (2006) The fidelity of DNA synthesis by yeast DNA polymerase zeta alone and with accessory proteins. Nucleic Acids Res 34(17):4731-42 PMID: 16971464
- Zhuang Z, et al. (2006) The structure of a ring-opened proliferating cell nuclear antigen-replication factor C complex revealed by fluorescence energy transfer. Proc Natl Acad Sci U S A 103(8):2546-51 PMID: 16476998
- Bylund GO and Burgers PM (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25(13):5445-55 PMID: 15964801
- Chen S, et al. (2005) The RING finger ATPase Rad5p of Saccharomyces cerevisiae contributes to DNA double-strand break repair in a ubiquitin-independent manner. Nucleic Acids Res 33(18):5878-86 PMID: 16224103
- Franco AA, et al. (2005) Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19(11):1365-75 PMID: 15901673
- Garg P and Burgers PM (2005) Ubiquitinated proliferating cell nuclear antigen activates translesion DNA polymerases eta and REV1. Proc Natl Acad Sci U S A 102(51):18361-6 PMID: 16344468
- Garg P, et al. (2005) Proliferating cell nuclear antigen promotes translesion synthesis by DNA polymerase zeta. J Biol Chem 280(25):23446-50 PMID: 15879599
- Guerini MN, et al. (2005) Biochemical and genetic analysis of the distinct proliferating cell nuclear antigens of Toxoplasma gondii. Mol Biochem Parasitol 142(1):56-65 PMID: 15878790
- Huang S, et al. (2005) Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proc Natl Acad Sci U S A 102(38):13410-5 PMID: 16157874
- Linger J and Tyler JK (2005) The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171(4):1513-22 PMID: 16143623
- Majka J and Burgers PM (2005) Function of Rad17/Mec3/Ddc1 and its partial complexes in the DNA damage checkpoint. DNA Repair (Amst) 4(10):1189-94 PMID: 16137930
- Minesinger BK and Jinks-Robertson S (2005) Roles of RAD6 epistasis group members in spontaneous polzeta-dependent translesion synthesis in Saccharomyces cerevisiae. Genetics 169(4):1939-55 PMID: 15687278
- Papouli E, et al. (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19(1):123-33 PMID: 15989970
- Pfander B, et al. (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436(7049):428-33 PMID: 15931174
- Prakash S, et al. (2005) Eukaryotic translesion synthesis DNA polymerases: specificity of structure and function. Annu Rev Biochem 74:317-53 PMID: 15952890
- Refsland EW and Livingston DM (2005) Interactions among DNA ligase I, the flap endonuclease and proliferating cell nuclear antigen in the expansion and contraction of CAG repeat tracts in yeast. Genetics 171(3):923-34 PMID: 16079237
- Ross AL, et al. (2005) Vertebrate DNA damage tolerance requires the C-terminus but not BRCT or transferase domains of REV1. Nucleic Acids Res 33(4):1280-9 PMID: 15741181
- Simpson LJ and Sale JE (2005) UBE2V2 (MMS2) is not required for effective immunoglobulin gene conversion or DNA damage tolerance in DT40. DNA Repair (Amst) 4(4):503-10 PMID: 15725630
- Subramanian J, et al. (2005) Genetic instability induced by overexpression of DNA ligase I in budding yeast. Genetics 171(2):427-41 PMID: 15965249
- Tsui C, et al. (2005) Ubiquitin binding site of the ubiquitin E2 variant (UEV) protein Mms2 is required for DNA damage tolerance in the yeast RAD6 pathway. J Biol Chem 280(20):19829-35 PMID: 15772086
- Ulrich HD, et al. (2005) SUMO keeps a check on recombination during DNA replication. Cell Cycle 4(12):1699-702 PMID: 16294012
- Bowman GD, et al. (2004) Structural analysis of a eukaryotic sliding DNA clamp-clamp loader complex. Nature 429(6993):724-30 PMID: 15201901
- Branzei D, et al. (2004) Rad18/Rad5/Mms2-mediated polyubiquitination of PCNA is implicated in replication completion during replication stress. Genes Cells 9(11):1031-42 PMID: 15507115
- Castillo AG, et al. (2004) Interaction between a geminivirus replication protein and the plant sumoylation system. J Virol 78(6):2758-69 PMID: 14990696
- Corrette-Bennett SE, et al. (2004) DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae. Nucleic Acids Res 32(21):6268-75 PMID: 15576353
- Haracska L, et al. (2004) Opposing effects of ubiquitin conjugation and SUMO modification of PCNA on replicational bypass of DNA lesions in Saccharomyces cerevisiae. Mol Cell Biol 24(10):4267-74 PMID: 15121847
- Johansson E, et al. (2004) The Pol32 subunit of DNA polymerase delta contains separable domains for processive replication and proliferating cell nuclear antigen (PCNA) binding. J Biol Chem 279(3):1907-15 PMID: 14594808
- Kannouche PL and Lehmann AR (2004) Ubiquitination of PCNA and the polymerase switch in human cells. Cell Cycle 3(8):1011-3 PMID: 15280666
- Majka J and Burgers PM (2004) The PCNA-RFC families of DNA clamps and clamp loaders. Prog Nucleic Acid Res Mol Biol 78:227-60 PMID: 15210332
- Majka J, et al. (2004) Requirement for ATP by the DNA damage checkpoint clamp loader. J Biol Chem 279(20):20921-6 PMID: 15014082
- Nikiforov AA, et al. (2004) [Dynamics of some postreplication DNA repair proteins in carcinogen-damaged mammalian cells]. Tsitologiia 46(1):43-52 PMID: 15112431
- Parrilla-Castellar ER, et al. (2004) Dial 9-1-1 for DNA damage: the Rad9-Hus1-Rad1 (9-1-1) clamp complex. DNA Repair (Amst) 3(8-9):1009-14 PMID: 15279787
- Pessoa-Brandão L and Sclafani RA (2004) CDC7/DBF4 functions in the translesion synthesis branch of the RAD6 epistasis group in Saccharomyces cerevisiae. Genetics 167(4):1597-610 PMID: 15342501
- Semple JW and Duncker BP (2004) ORC-associated replication factors as biomarkers for cancer. Biotechnol Adv 22(8):621-31 PMID: 15364349
- Sundin BA, et al. (2004) Localization of proteins that are coordinately expressed with Cln2 during the cell cycle. Yeast 21(9):793-800 PMID: 15282802
- Wang X, et al. (2004) Role of DNA replication proteins in double-strand break-induced recombination in Saccharomyces cerevisiae. Mol Cell Biol 24(16):6891-9 PMID: 15282291
- Yamamoto T, et al. (2004) Degradation of proliferating cell nuclear antigen by 26S proteasome in rice (Oryza sativa L.). Planta 218(4):640-6 PMID: 14618323
- Ellison V and Stillman B (2003) Biochemical characterization of DNA damage checkpoint complexes: clamp loader and clamp complexes with specificity for 5' recessed DNA. PLoS Biol 1(2):E33 PMID: 14624239
- Hashimoto K, et al. (2003) Fidelity of DNA polymerase delta holoenzyme from Saccharomyces cerevisiae: the sliding clamp proliferating cell nuclear antigen decreases its fidelity. Biochemistry 42(48):14207-13 PMID: 14640688
- Jin YH, et al. (2003) Okazaki fragment maturation in yeast. II. Cooperation between the polymerase and 3'-5'-exonuclease activities of Pol delta in the creation of a ligatable nick. J Biol Chem 278(3):1626-33 PMID: 12424237
- Kanellis P, et al. (2003) Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr Biol 13(18):1583-95 PMID: 13678589
- Kanoh J, et al. (2003) The fission yeast spSet1p is a histone H3-K4 methyltransferase that functions in telomere maintenance and DNA repair in an ATM kinase Rad3-dependent pathway. J Mol Biol 326(4):1081-94 PMID: 12589755
- Kenna MA and Skibbens RV (2003) Mechanical link between cohesion establishment and DNA replication: Ctf7p/Eco1p, a cohesion establishment factor, associates with three different replication factor C complexes. Mol Cell Biol 23(8):2999-3007 PMID: 12665596
- Lau PJ and Kolodner RD (2003) Transfer of the MSH2.MSH6 complex from proliferating cell nuclear antigen to mispaired bases in DNA. J Biol Chem 278(1):14-7 PMID: 12435741
- Maga G and Hubscher U (2003) Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci 116(Pt 15):3051-60 PMID: 12829735
- Majka J and Burgers PM (2003) Yeast Rad17/Mec3/Ddc1: a sliding clamp for the DNA damage checkpoint. Proc Natl Acad Sci U S A 100(5):2249-54 PMID: 12604797
- Pavlov YI, et al. (2003) Evidence for preferential mismatch repair of lagging strand DNA replication errors in yeast. Curr Biol 13(9):744-8 PMID: 12725731
- Stelter P and Ulrich HD (2003) Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425(6954):188-91 PMID: 12968183
- Yao N, et al. (2003) Replication factor C clamp loader subunit arrangement within the circular pentamer and its attachment points to proliferating cell nuclear antigen. J Biol Chem 278(50):50744-53 PMID: 14530260
- Zou L, et al. (2003) Replication protein A-mediated recruitment and activation of Rad17 complexes. Proc Natl Acad Sci U S A 100(24):13827-32 PMID: 14605214
- Branzei D, et al. (2002) The product of Saccharomyces cerevisiae WHIP/MGS1, a gene related to replication factor C genes, interacts functionally with DNA polymerase delta. Mol Genet Genomics 268(3):371-86 PMID: 12436259
- Hoege C, et al. (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419(6903):135-41 PMID: 12226657
- Ionescu CN, et al. (2002) Monomeric yeast PCNA mutants are defective in interacting with and stimulating the ATPase activity of RFC. Biochemistry 41(43):12975-85 PMID: 12390024
- Krawitz DC, et al. (2002) Chromatin assembly factor I mutants defective for PCNA binding require Asf1/Hir proteins for silencing. Mol Cell Biol 22(2):614-25 PMID: 11756556
- Lau PJ, et al. (2002) Isolation and characterization of new proliferating cell nuclear antigen (POL30) mutator mutants that are defective in DNA mismatch repair. Mol Cell Biol 22(19):6669-80 PMID: 12215524
- Marti TM, et al. (2002) DNA mismatch repair and mutation avoidance pathways. J Cell Physiol 191(1):28-41 PMID: 11920679
- Matsumiya S, et al. (2002) Physical interaction between proliferating cell nuclear antigen and replication factor C from Pyrococcus furiosus. Genes Cells 7(9):911-22 PMID: 12296822
- Matunis MJ (2002) On the road to repair: PCNA encounters SUMO and ubiquitin modifications. Mol Cell 10(3):441-2 PMID: 12408814
- Mitkova AV, et al. (2002) Cell cycle specific plasmid DNA replication in the nuclear extract of Saccharomyces cerevisiae: modulation by replication protein A and proliferating cell nuclear antigen. Biochemistry 41(16):5255-65 PMID: 11955075
- Paradis H, et al. (2002) Tubedown-1 in remodeling of the developing vitreal vasculature in vivo and regulation of capillary outgrowth in vitro. Dev Biol 249(1):140-55 PMID: 12217325
- Schmidt KH, et al. (2002) Saccharomyces cerevisiae RRM3, a 5' to 3' DNA helicase, physically interacts with proliferating cell nuclear antigen. J Biol Chem 277(47):45331-7 PMID: 12239216
- Shimizu K, et al. (2002) The fifth essential DNA polymerase phi in Saccharomyces cerevisiae is localized to the nucleolus and plays an important role in synthesis of rRNA. Proc Natl Acad Sci U S A 99(14):9133-8 PMID: 12093911
- Sun X, et al. (2002) Suppression of Saccharomyces cerevisiae rad27 null mutant phenotypes by the 5' nuclease domain of Escherichia coli DNA polymerase I. Curr Genet 41(6):379-88 PMID: 12228807
- Torres-Ramos CA, et al. (2002) Requirement of RAD5 and MMS2 for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 22(7):2419-26 PMID: 11884624
- Unk I, et al. (2002) Stimulation of 3'-->5' exonuclease and 3'-phosphodiesterase activities of yeast apn2 by proliferating cell nuclear antigen. Mol Cell Biol 22(18):6480-6 PMID: 12192046
- Venclovas C, et al. (2002) Molecular modeling-based analysis of interactions in the RFC-dependent clamp-loading process. Protein Sci 11(10):2403-16 PMID: 12237462
- Wang H and Elledge SJ (2002) Genetic and physical interactions between DPB11 and DDC1 in the yeast DNA damage response pathway. Genetics 160(4):1295-304 PMID: 11973288
- Amin NS, et al. (2001) exo1-Dependent mutator mutations: model system for studying functional interactions in mismatch repair. Mol Cell Biol 21(15):5142-55 PMID: 11438669
- Bowers J, et al. (2001) MSH-MLH complexes formed at a DNA mismatch are disrupted by the PCNA sliding clamp. J Mol Biol 306(5):957-68 PMID: 11237611
- Carson DR and Christman MF (2001) Evidence that replication fork components catalyze establishment of cohesion between sister chromatids. Proc Natl Acad Sci U S A 98(15):8270-5 PMID: 11459963
- Frank G, et al. (2001) Stimulation of eukaryotic flap endonuclease-1 activities by proliferating cell nuclear antigen (PCNA) is independent of its in vitro interaction via a consensus PCNA binding region. J Biol Chem 276(39):36295-302 PMID: 11477073
- Gomes XV and Burgers PM (2001) ATP utilization by yeast replication factor C. I. ATP-mediated interaction with DNA and with proliferating cell nuclear antigen. J Biol Chem 276(37):34768-75 PMID: 11432853
- Gomes XV, et al. (2001) ATP utilization by yeast replication factor C. II. Multiple stepwise ATP binding events are required to load proliferating cell nuclear antigen onto primed DNA. J Biol Chem 276(37):34776-83 PMID: 11432856
- Haracska L, et al. (2001) Interaction with PCNA is essential for yeast DNA polymerase eta function. Mol Cell 8(2):407-15 PMID: 11545742
- Jeruzalmi D, et al. (2001) Crystal structure of the processivity clamp loader gamma (gamma) complex of E. coli DNA polymerase III. Cell 106(4):429-41 PMID: 11525729
- Kleczkowska HE, et al. (2001) hMSH3 and hMSH6 interact with PCNA and colocalize with it to replication foci. Genes Dev 15(6):724-36 PMID: 11274057
- Melo JA, et al. (2001) Two checkpoint complexes are independently recruited to sites of DNA damage in vivo. Genes Dev 15(21):2809-21 PMID: 11691833
- Ola A, et al. (2001) Human-Saccharomyces cerevisiae proliferating cell nuclear antigen hybrids: oligomeric structure and functional characterization using in vitro DNA replication. J Biol Chem 276(13):10168-77 PMID: 11094057
- Paunesku T, et al. (2001) Proliferating cell nuclear antigen (PCNA): ringmaster of the genome. Int J Radiat Biol 77(10):1007-21 PMID: 11682006
- Pflumm MF and Botchan MR (2001) Orc mutants arrest in metaphase with abnormally condensed chromosomes. Development 128(9):1697-707 PMID: 11290306
- Schmidt SL, et al. (2001) ATP utilization by yeast replication factor C. III. The ATP-binding domains of Rfc2, Rfc3, and Rfc4 are essential for DNA recognition and clamp loading. J Biol Chem 276(37):34784-91 PMID: 11432854
- Sharp JA, et al. (2001) Yeast histone deposition protein Asf1p requires Hir proteins and PCNA for heterochromatic silencing. Curr Biol 11(7):463-73 PMID: 11412995
- Wang Z and Christman MF (2001) Replication-related activities establish cohesion between sister chromatids. Cell Biochem Biophys 35(3):289-301 PMID: 11894848
- Zhang H, et al. (2001) Characterization of DNA damage-stimulated self-interaction of Saccharomyces cerevisiae checkpoint protein Rad17p. J Biol Chem 276(28):26715-23 PMID: 11356855
- Araújo SJ, et al. (2000) Nucleotide excision repair of DNA with recombinant human proteins: definition of the minimal set of factors, active forms of TFIIH, and modulation by CAK. Genes Dev 14(3):349-59 PMID: 10673506
- Cai RL, et al. (2000) HDAC1, a histone deacetylase, forms a complex with Hus1 and Rad9, two G2/M checkpoint Rad proteins. J Biol Chem 275(36):27909-16 PMID: 10846170
- Clark AB, et al. (2000) Functional interaction of proliferating cell nuclear antigen with MSH2-MSH6 and MSH2-MSH3 complexes. J Biol Chem 275(47):36498-501 PMID: 11005803
- Flores-Rozas H, et al. (2000) Proliferating cell nuclear antigen and Msh2p-Msh6p interact to form an active mispair recognition complex. Nat Genet 26(3):375-8 PMID: 11062484
- Gomes XV and Burgers PM (2000) Two modes of FEN1 binding to PCNA regulated by DNA. EMBO J 19(14):3811-21 PMID: 10899134
- Gray FC and MacNeill SA (2000) The Schizosaccharomyces pombe rfc3+ gene encodes a homologue of the human hRFC36 and Saccharomyces cerevisiae Rfc3 subunits of replication factor C. Curr Genet 37(3):159-67 PMID: 10794172
- Mo J, et al. (2000) Evidence that DNA polymerase delta isolated by immunoaffinity chromatography exhibits high-molecular weight characteristics and is associated with the KIAA0039 protein and RPA. Biochemistry 39(24):7245-54 PMID: 10852724
- Neuwald AF and Poleksic A (2000) PSI-BLAST searches using hidden markov models of structural repeats: prediction of an unusual sliding DNA clamp and of beta-propellers in UV-damaged DNA-binding protein. Nucleic Acids Res 28(18):3570-80 PMID: 10982878
- Venclovas C and Thelen MP (2000) Structure-based predictions of Rad1, Rad9, Hus1 and Rad17 participation in sliding clamp and clamp-loading complexes. Nucleic Acids Res 28(13):2481-93 PMID: 10871397
- Warbrick E (2000) The puzzle of PCNA's many partners. Bioessays 22(11):997-1006 PMID: 11056476
- Zhang Z, et al. (2000) PCNA connects DNA replication to epigenetic inheritance in yeast. Nature 408(6809):221-5 PMID: 11089978
- Amin NS, et al. (1999) Dominant mutations in three different subunits of replication factor C suppress replication defects in yeast PCNA mutants. Genetics 153(4):1617-28 PMID: 10581271
- Ehrenhofer-Murray AE, et al. (1999) A role for the replication proteins PCNA, RF-C, polymerase epsilon and Cdc45 in transcriptional silencing in Saccharomyces cerevisiae. Genetics 153(3):1171-82 PMID: 10545450
- Gary R, et al. (1999) A novel role in DNA metabolism for the binding of Fen1/Rad27 to PCNA and implications for genetic risk. Mol Cell Biol 19(8):5373-82 PMID: 10409728
- Greene AL, et al. (1999) Functional analysis of human FEN1 in Saccharomyces cerevisiae and its role in genome stability. Hum Mol Genet 8(12):2263-73 PMID: 10545607
- Holmes AM and Haber JE (1999) Double-strand break repair in yeast requires both leading and lagging strand DNA polymerases. Cell 96(3):415-24 PMID: 10025407
- Kokoska RJ, et al. (1999) A mutation of the yeast gene encoding PCNA destabilizes both microsatellite and minisatellite DNA sequences. Genetics 151(2):511-9 PMID: 9927447
- Kolodner RD and Marsischky GT (1999) Eukaryotic DNA mismatch repair. Curr Opin Genet Dev 9(1):89-96 PMID: 10072354
- Schweitzer JK and Livingston DM (1999) The effect of DNA replication mutations on CAG tract stability in yeast. Genetics 152(3):953-63 PMID: 10388815
- Shamoo Y and Steitz TA (1999) Building a replisome from interacting pieces: sliding clamp complexed to a peptide from DNA polymerase and a polymerase editing complex. Cell 99(2):155-66 PMID: 10535734
- Skibbens RV, et al. (1999) Ctf7p is essential for sister chromatid cohesion and links mitotic chromosome structure to the DNA replication machinery. Genes Dev 13(3):307-19 PMID: 9990855
- Tsurimoto T (1999) PCNA binding proteins. Front Biosci 4:D849-58 PMID: 10577396
- Beckwith WH, et al. (1998) Destabilized PCNA trimers suppress defective Rfc1 proteins in vivo and in vitro. Biochemistry 37(11):3711-22 PMID: 9521689
- Burgers PM and Gerik KJ (1998) Structure and processivity of two forms of Saccharomyces cerevisiae DNA polymerase delta. J Biol Chem 273(31):19756-62 PMID: 9677406
- Gu L, et al. (1998) ATP-dependent interaction of human mismatch repair proteins and dual role of PCNA in mismatch repair. Nucleic Acids Res 26(5):1173-8 PMID: 9469823
- Hashimoto K, et al. (1998) The second subunit of DNA polymerase III (delta) is encoded by the HYS2 gene in Saccharomyces cerevisiae. Nucleic Acids Res 26(2):477-85 PMID: 9421503
- Huang W, et al. (1998) The N-degron protein degradation strategy for investigating the function of essential genes: requirement for replication protein A and proliferating cell nuclear antigen proteins for nucleotide excision repair in yeast extracts. Mutat Res 408(3):183-94 PMID: 9806417
- Merrill BJ and Holm C (1998) The RAD52 recombinational repair pathway is essential in pol30 (PCNA) mutants that accumulate small single-stranded DNA fragments during DNA synthesis. Genetics 148(2):611-24 PMID: 9504910
- Mossi R and Hübscher U (1998) Clamping down on clamps and clamp loaders--the eukaryotic replication factor C. Eur J Biochem 254(2):209-16 PMID: 9660172
- Saha P, et al. (1998) Human CDC6/Cdc18 associates with Orc1 and cyclin-cdk and is selectively eliminated from the nucleus at the onset of S phase. Mol Cell Biol 18(5):2758-67 PMID: 9566895
- Svetlova MP, et al. (1998) Staurosporine-sensitive protein phosphorylation is required for postreplication DNA repair in human cells. FEBS Lett 428(1-2):23-6 PMID: 9645467
- Eissenberg JC, et al. (1997) Mutations in yeast proliferating cell nuclear antigen define distinct sites for interaction with DNA polymerase delta and DNA polymerase epsilon. Mol Cell Biol 17(11):6367-78 PMID: 9343398
- Gerik KJ, et al. (1997) Overproduction and affinity purification of Saccharomyces cerevisiae replication factor C. J Biol Chem 272(2):1256-62 PMID: 8995429
- Gibbs E, et al. (1997) The influence of the proliferating cell nuclear antigen-interacting domain of p21(CIP1) on DNA synthesis catalyzed by the human and Saccharomyces cerevisiae polymerase delta holoenzymes. J Biol Chem 272(4):2373-81 PMID: 8999948
- Lieber MR (1997) The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19(3):233-40 PMID: 9080773
- Markley NA, et al. (1997) Molecular genetic and biochemical analysis of Brassica napus proliferating cell nuclear antigen function. Plant Mol Biol 34(4):693-700 PMID: 9247551
- Sang N, et al. (1997) Transforming region of 243R E1A contains two overlapping but distinct transactivation domains. DNA Cell Biol 16(11):1321-33 PMID: 9407004
- Amin NS and Holm C (1996) In vivo analysis reveals that the interdomain region of the yeast proliferating cell nuclear antigen is important for DNA replication and DNA repair. Genetics 144(2):479-93 PMID: 8889514
- Gulbis JM, et al. (1996) Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell 87(2):297-306 PMID: 8861913
- Johnson RE, et al. (1996) Evidence for involvement of yeast proliferating cell nuclear antigen in DNA mismatch repair. J Biol Chem 271(45):27987-90 PMID: 8910404
- Torres-Ramos CA, et al. (1996) Requirement of proliferating cell nuclear antigen in RAD6-dependent postreplicational DNA repair. Proc Natl Acad Sci U S A 93(18):9676-81 PMID: 8790390
- Umar A, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87(1):65-73 PMID: 8858149
- Wu X, et al. (1996) Processing of branched DNA intermediates by a complex of human FEN-1 and PCNA. Nucleic Acids Res 24(11):2036-43 PMID: 8668533
- Ayyagari R, et al. (1995) A mutational analysis of the yeast proliferating cell nuclear antigen indicates distinct roles in DNA replication and DNA repair. Mol Cell Biol 15(8):4420-9 PMID: 7623835
- Li X, et al. (1995) Lagging strand DNA synthesis at the eukaryotic replication fork involves binding and stimulation of FEN-1 by proliferating cell nuclear antigen. J Biol Chem 270(38):22109-12 PMID: 7673186
- Krishna TS, et al. (1994) Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79(7):1233-43 PMID: 8001157
- Krishna TS, et al. (1994) Crystallization of proliferating cell nuclear antigen (PCNA) from Saccharomyces cerevisiae. J Mol Biol 241(2):265-8 PMID: 7914545
- McAlear MA, et al. (1994) Proliferating cell nuclear antigen (pol30) mutations suppress cdc44 mutations and identify potential regions of interaction between the two encoded proteins. Mol Cell Biol 14(7):4390-7 PMID: 7516465
- Biggerstaff M, et al. (1993) Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J 12(9):3685-92 PMID: 8253090
- Brown WC and Campbell JL (1993) Interaction of proliferating cell nuclear antigen with yeast DNA polymerase delta. J Biol Chem 268(29):21706-10 PMID: 8104944
- Burgers PM and Yoder BL (1993) ATP-independent loading of the proliferating cell nuclear antigen requires DNA ends. J Biol Chem 268(27):19923-6 PMID: 8104181
- Fien K and Stillman B (1992) Identification of replication factor C from Saccharomyces cerevisiae: a component of the leading-strand DNA replication complex. Mol Cell Biol 12(1):155-63 PMID: 1346062
- Burgers PM (1991) Saccharomyces cerevisiae replication factor C. II. Formation and activity of complexes with the proliferating cell nuclear antigen and with DNA polymerases delta and epsilon. J Biol Chem 266(33):22698-706 PMID: 1682322
- Lee SH, et al. (1991) Synthesis of DNA by DNA polymerase epsilon in vitro. J Biol Chem 266(33):22707-17 PMID: 1682323
- Shipman-Appasamy PM, et al. (1991) Nucleotide sequence of murine PCNA: interspecies comparison of the cDNA and the 5' flanking region of the gene. DNA Seq 2(3):181-91 PMID: 1726365
- Yoder BL and Burgers PM (1991) Saccharomyces cerevisiae replication factor C. I. Purification and characterization of its ATPase activity. J Biol Chem 266(33):22689-97 PMID: 1682321
- Bauer GA and Burgers PM (1990) Molecular cloning, structure and expression of the yeast proliferating cell nuclear antigen gene. Nucleic Acids Res 18(2):261-5 PMID: 1970160
- Hamatake RK, et al. (1990) Purification and characterization of DNA polymerase II from the yeast Saccharomyces cerevisiae. Identification of the catalytic core and a possible holoenzyme form of the enzyme. J Biol Chem 265(7):4072-83 PMID: 2406268
- Bauer GA and Burgers PM (1988) The yeast analog of mammalian cyclin/proliferating-cell nuclear antigen interacts with mammalian DNA polymerase delta. Proc Natl Acad Sci U S A 85(20):7506-10 PMID: 2902631
- Bauer GA and Burgers PM (1988) Protein-protein interactions of yeast DNA polymerase III with mammalian and yeast proliferating cell nuclear antigen (PCNA)/cyclin. Biochim Biophys Acta 951(2-3):274-9 PMID: 2905171
- Burgers PM (1988) Mammalian cyclin/PCNA (DNA polymerase delta auxiliary protein) stimulates processive DNA synthesis by yeast DNA polymerase III. Nucleic Acids Res 16(14A):6297-307 PMID: 2899883