Primary Literature
TEXT HERE
- Tasnin MN, et al. (2025) ESCRT mediates micronucleophagy and macronucleophagy in yeast. Biochem Biophys Res Commun 742:151102 PMID: 39642706
- Kamada Y, et al. (2024) Structure-based engineering of Tor complexes reveals that two types of yeast TORC1 produce distinct phenotypes. J Cell Sci 137(4) PMID: 38415789
- Kociemba J, et al. (2024) Multi-signal regulation of the GSK-3β homolog Rim11 controls meiosis entry in budding yeast. EMBO J 43(15):3256-3286 PMID: 38886580
- Naaz A, et al. (2024) Curcumin Inhibits TORC1 and Prolongs the Lifespan of Cells with Mitochondrial Dysfunction. Cells 13(17) PMID: 39273040
- Williams TD, et al. (2024) Distinct TORC1 signalling branches regulate Adc17 proteasome assembly chaperone expression. J Cell Sci 137(14) PMID: 38949052
- Black A, et al. (2023) The ribosome-associated chaperone Zuo1 controls translation upon TORC1 inhibition. EMBO J 42(24):e113240 PMID: 37984430
- Blank HM, et al. (2023) Branched-chain amino acid synthesis is coupled to TOR activation early in the cell cycle in yeast. EMBO Rep 24(9):e57372 PMID: 37497662
- Prouteau M, et al. (2023) EGOC inhibits TOROID polymerization by structurally activating TORC1. Nat Struct Mol Biol 30(3):273-285 PMID: 36702972
- Gutiérrez-Santiago F, et al. (2022) A High-Copy Suppressor Screen Reveals a Broad Role of Prefoldin-like Bud27 in the TOR Signaling Pathway in <i>Saccharomyces cerevisiae</i>. Genes (Basel) 13(5) PMID: 35627133
- Nicastro R, et al. (2022) Manganese is a physiologically relevant TORC1 activator in yeast and mammals. Elife 11 PMID: 35904415
- Takuma T and Ushimaru T (2022) Vacuolar fragmentation promotes fluxes of microautophagy and micronucleophagy but not of macroautophagy. Biochem Biophys Res Commun 614:161-168 PMID: 35597153
- Troutman KK, et al. (2022) Conserved Pib2 regions have distinct roles in TORC1 regulation at the vacuole. J Cell Sci 135(18) PMID: 36000409
- Wallace RL, et al. (2022) Ait1 regulates TORC1 signaling and localization in budding yeast. Elife 11 PMID: 36047762
- Birgit Meldal and Sandra Orchard (2018) Manual transfer of experimentally-verified manual GO annotation data to homologous complexes by curator judgment of sequence, composition and function similarity.
- Gonzalez S and Rallis C (2017) The TOR Signaling Pathway in Spatial and Temporal Control of Cell Size and Growth. Front Cell Dev Biol 5:61 PMID: 28638821
- Karuppasamy M, et al. (2017) Cryo-EM structure of Saccharomyces cerevisiae target of rapamycin complex 2. Nat Commun 8(1):1729 PMID: 29170376
- Prouteau M, et al. (2017) TORC1 organized in inhibited domains (TOROIDs) regulate TORC1 activity. Nature 550(7675):265-269 PMID: 28976958
- Yerlikaya S, et al. (2016) TORC1 and TORC2 work together to regulate ribosomal protein S6 phosphorylation in Saccharomyces cerevisiae. Mol Biol Cell 27(2):397-409 PMID: 26582391
- Jacinto E and Lorberg A (2008) TOR regulation of AGC kinases in yeast and mammals. Biochem J 410(1):19-37 PMID: 18215152
- Reinke A, et al. (2004) TOR complex 1 includes a novel component, Tco89p (YPL180w), and cooperates with Ssd1p to maintain cellular integrity in Saccharomyces cerevisiae. J Biol Chem 279(15):14752-62 PMID: 14736892
- Wedaman KP, et al. (2003) Tor kinases are in distinct membrane-associated protein complexes in Saccharomyces cerevisiae. Mol Biol Cell 14(3):1204-20 PMID: 12631735
- Loewith R, et al. (2002) Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control. Mol Cell 10(3):457-68 PMID: 12408816