Primary Literature
TEXT HERE
- Gnügge R, et al. (2023) Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 83(8):1237-1250.e15 PMID: 36917982
- Rinaldi C, et al. (2023) The Ku complex promotes DNA end-bridging and this function is antagonized by Tel1/ATM kinase. Nucleic Acids Res 51(4):1783-1802 PMID: 36762474
- Mojumdar A, et al. (2022) Changes in DNA double-strand break repair during aging correlate with an increase in genomic mutations. J Mol Biol 434(20):167798 PMID: 35998703
- Ma M, et al. (2020) Activation of ATR-related protein kinase upon DNA damage recognition. Curr Genet 66(2):327-333 PMID: 31624858
- Yun H and Kim K (2019) Ku complex suppresses recombination in the absence of MRX activity during budding yeast meiosis. BMB Rep 52(10):607-612 PMID: 30940321
- Chen H, et al. (2018) Structural Insights into Yeast Telomerase Recruitment to Telomeres. Cell 172(1-2):331-343.e13 PMID: 29290466
- Emerson CH, et al. (2018) Ku DNA End-Binding Activity Promotes Repair Fidelity and Influences End-Processing During Nonhomologous End-Joining in <i>Saccharomyces cerevisiae</i>. Genetics 209(1):115-128 PMID: 29500182
- Gobbini E, et al. (2018) The MRX complex regulates Exo1 resection activity by altering DNA end structure. EMBO J 37(16) PMID: 29925516
- Ito Y, et al. (2018) Deletion of DNA ligase IV homolog confers higher gene targeting efficiency on homologous recombination in Komagataella phaffii. FEMS Yeast Res 18(7) PMID: 30010892
- Lemos BR, et al. (2018) CRISPR/Cas9 cleavages in budding yeast reveal templated insertions and strand-specific insertion/deletion profiles. Proc Natl Acad Sci U S A 115(9):E2040-E2047 PMID: 29440496
- Wang W, et al. (2018) A DNA nick at Ku-blocked double-strand break ends serves as an entry site for exonuclease 1 (Exo1) or Sgs1-Dna2 in long-range DNA end resection. J Biol Chem 293(44):17061-17069 PMID: 30224356
- Wang W, et al. (2017) Plasticity of the Mre11-Rad50-Xrs2-Sae2 nuclease ensemble in the processing of DNA-bound obstacles. Genes Dev 31(23-24):2331-2336 PMID: 29321177
- Iwasaki D, et al. (2016) The MRX Complex Ensures NHEJ Fidelity through Multiple Pathways Including Xrs2-FHA-Dependent Tel1 Activation. PLoS Genet 12(3):e1005942 PMID: 26990569
- Larcher MV, et al. (2016) Ku Binding on Telomeres Occurs at Sites Distal from the Physical Chromosome Ends. PLoS Genet 12(12):e1006479 PMID: 27930670
- Hang LE, et al. (2014) Regulation of Ku-DNA association by Yku70 C-terminal tail and SUMO modification. J Biol Chem 289(15):10308-10317 PMID: 24567323
- Hardy J, et al. (2014) Sgs1 and Sae2 promote telomere replication by limiting accumulation of ssDNA. Nat Commun 5:5004 PMID: 25254351
- Mathiasen DP and Lisby M (2014) Cell cycle regulation of homologous recombination in Saccharomyces cerevisiae. FEMS Microbiol Rev 38(2):172-84 PMID: 24483249
- Rubinstein L, et al. (2014) Telomere length kinetics assay (TELKA) sorts the telomere length maintenance (tlm) mutants into functional groups. Nucleic Acids Res 42(10):6314-25 PMID: 24728996
- Williams JM, et al. (2014) The principal role of Ku in telomere length maintenance is promotion of Est1 association with telomeres. Genetics 197(4):1123-36 PMID: 24879463
- Dalby AB, et al. (2013) RNA recognition by the DNA end-binding Ku heterodimer. RNA 19(6):841-51 PMID: 23610127
- Nandakumar J and Cech TR (2013) Finding the end: recruitment of telomerase to telomeres. Nat Rev Mol Cell Biol 14(2):69-82 PMID: 23299958
- Grob P, et al. (2012) Electron microscopy visualization of DNA-protein complexes formed by Ku and DNA ligase IV. DNA Repair (Amst) 11(1):74-81 PMID: 22088982
- Pfingsten JS, et al. (2012) Mutually exclusive binding of telomerase RNA and DNA by Ku alters telomerase recruitment model. Cell 148(5):922-32 PMID: 22365814
- Foster SS, et al. (2011) Functional interplay of the Mre11 nuclease and Ku in the response to replication-associated DNA damage. Mol Cell Biol 31(21):4379-89 PMID: 21876003
- Langerak P, et al. (2011) Release of Ku and MRN from DNA ends by Mre11 nuclease activity and Ctp1 is required for homologous recombination repair of double-strand breaks. PLoS Genet 7(9):e1002271 PMID: 21931565
- Lian HY, et al. (2011) The effect of Ku on telomere replication time is mediated by telomere length but is independent of histone tail acetylation. Mol Biol Cell 22(10):1753-65 PMID: 21441303
- Lopez CR, et al. (2011) Ku must load directly onto the chromosome end in order to mediate its telomeric functions. PLoS Genet 7(8):e1002233 PMID: 21852961
- Ungar L, et al. (2011) Tor complex 1 controls telomere length by affecting the level of Ku. Curr Biol 21(24):2115-20 PMID: 22169538
- Shim EY, et al. (2010) Saccharomyces cerevisiae Mre11/Rad50/Xrs2 and Ku proteins regulate association of Exo1 and Dna2 with DNA breaks. EMBO J 29(19):3370-80 PMID: 20834227
- Bystricky K, et al. (2009) Regulation of nuclear positioning and dynamics of the silent mating type loci by the yeast Ku70/Ku80 complex. Mol Cell Biol 29(3):835-48 PMID: 19047366
- Liti G, et al. (2009) Segregating YKU80 and TLC1 alleles underlying natural variation in telomere properties in wild yeast. PLoS Genet 5(9):e1000659 PMID: 19763176
- Loney ER, et al. (2009) Repressive and non-repressive chromatin at native telomeres in Saccharomyces cerevisiae. Epigenetics Chromatin 2(1):18 PMID: 19954519
- Marvin ME, et al. (2009) In Saccharomyces cerevisiae, yKu and subtelomeric core X sequences repress homologous recombination near telomeres as part of the same pathway. Genetics 183(2):441-51, 1SI-12SI PMID: 19652177
- Wasko BM, et al. (2009) Inhibition of DNA double-strand break repair by the Ku heterodimer in mrx mutants of Saccharomyces cerevisiae. DNA Repair (Amst) 8(2):162-9 PMID: 18992851
- Clerici M, et al. (2008) The Yku70-Yku80 complex contributes to regulate double-strand break processing and checkpoint activation during the cell cycle. EMBO Rep 9(8):810-8 PMID: 18600234
- Ponnusamy S, et al. (2008) Regulation of telomere length by fatty acid elongase 3 in yeast. Involvement of inositol phosphate metabolism and Ku70/80 function. J Biol Chem 283(41):27514-27524 PMID: 18694931
- Wu D, et al. (2008) Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 178(3):1237-49 PMID: 18245831
- Krishna S, et al. (2007) Mre11 and Ku regulation of double-strand break repair by gene conversion and break-induced replication. DNA Repair (Amst) 6(6):797-808 PMID: 17321803
- Pike BL and Heierhorst J (2007) Mdt1 facilitates efficient repair of blocked DNA double-strand breaks and recombinational maintenance of telomeres. Mol Cell Biol 27(18):6532-45 PMID: 17636027
- Ribes-Zamora A, et al. (2007) Distinct faces of the Ku heterodimer mediate DNA repair and telomeric functions. Nat Struct Mol Biol 14(4):301-7 PMID: 17351632
- Banerjee S, et al. (2006) Suppression of gross chromosomal rearrangements by yKu70-yKu80 heterodimer through DNA damage checkpoints. Proc Natl Acad Sci U S A 103(6):1816-21 PMID: 16446442
- Pöggeler S and Kück U (2006) Highly efficient generation of signal transduction knockout mutants using a fungal strain deficient in the mammalian ku70 ortholog. Gene 378:1-10 PMID: 16814491
- Palmbos PL, et al. (2005) Mutations of the Yku80 C terminus and Xrs2 FHA domain specifically block yeast nonhomologous end joining. Mol Cell Biol 25(24):10782-90 PMID: 16314503
- Rog O, et al. (2005) The yeast VPS genes affect telomere length regulation. Curr Genet 47(1):18-28 PMID: 15551135
- Fisher TS, et al. (2004) Cell cycle-dependent regulation of yeast telomerase by Ku. Nat Struct Mol Biol 11(12):1198-205 PMID: 15531893
- Kooistra R, et al. (2004) Efficient gene targeting in Kluyveromyces lactis. Yeast 21(9):781-92 PMID: 15282801
- Roy R, et al. (2004) Separation-of-function mutants of yeast Ku80 reveal a Yku80p-Sir4p interaction involved in telomeric silencing. J Biol Chem 279(1):86-94 PMID: 14551211
- Taddei A, et al. (2004) Separation of silencing from perinuclear anchoring functions in yeast Ku80, Sir4 and Esc1 proteins. EMBO J 23(6):1301-12 PMID: 15014445
- Yu J, et al. (2004) Microhomology-dependent end joining and repair of transposon-induced DNA hairpins by host factors in Saccharomyces cerevisiae. Mol Cell Biol 24(3):1351-64 PMID: 14729978
- Bertuch AA and Lundblad V (2003) The Ku heterodimer performs separable activities at double-strand breaks and chromosome termini. Mol Cell Biol 23(22):8202-15 PMID: 14585978
- Gallego ME, et al. (2003) Ku80 plays a role in non-homologous recombination but is not required for T-DNA integration in Arabidopsis. Plant J 35(5):557-65 PMID: 12940949
- Cosgrove AJ, et al. (2002) Ku complex controls the replication time of DNA in telomere regions. Genes Dev 16(19):2485-90 PMID: 12368259
- Gravel S and Wellinger RJ (2002) Maintenance of double-stranded telomeric repeats as the critical determinant for cell viability in yeast cells lacking Ku. Mol Cell Biol 22(7):2182-93 PMID: 11884605
- Hediger F, et al. (2002) Live imaging of telomeres: yKu and Sir proteins define redundant telomere-anchoring pathways in yeast. Curr Biol 12(24):2076-89 PMID: 12498682
- Tsai YL, et al. (2002) Involvement of replicative polymerases, Tel1p, Mec1p, Cdc13p, and the Ku complex in telomere-telomere recombination. Mol Cell Biol 22(16):5679-87 PMID: 12138180
- d'Adda di Fagagna F, et al. (2001) Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11(15):1192-6 PMID: 11516951
- Manolis KG, et al. (2001) Novel functional requirements for non-homologous DNA end joining in Schizosaccharomyces pombe. EMBO J 20(1-2):210-21 PMID: 11226171
- Romero F, et al. (2001) Human securin, hPTTG, is associated with Ku heterodimer, the regulatory subunit of the DNA-dependent protein kinase. Nucleic Acids Res 29(6):1300-7 PMID: 11238996
- Walker JR, et al. (2001) Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412(6847):607-14 PMID: 11493912
- Zhang Z, et al. (2001) The three-dimensional structure of the C-terminal DNA-binding domain of human Ku70. J Biol Chem 276(41):38231-6 PMID: 11457852
- Cervelli T and Galli A (2000) Effects of HDF1 (Ku70) and HDF2 (Ku80) on spontaneous and DNA damage-induced intrachromosomal recombination in Saccharomyces cerevisiae. Mol Gen Genet 264(1-2):56-63 PMID: 11016833
- Fellerhoff B, et al. (2000) Subtelomeric repeat amplification is associated with growth at elevated temperature in yku70 mutants of Saccharomyces cerevisiae. Genetics 154(3):1039-51 PMID: 10757752
- Camara-Clayette V, et al. (1999) The repressor which binds the -75 GATA motif of the GPB promoter contains Ku70 as the DNA binding subunit. Nucleic Acids Res 27(7):1656-63 PMID: 10075997
- Martin SG, et al. (1999) Relocalization of telomeric Ku and SIR proteins in response to DNA strand breaks in yeast. Cell 97(5):621-33 PMID: 10367891
- Barlev NA, et al. (1998) Repression of GCN5 histone acetyltransferase activity via bromodomain-mediated binding and phosphorylation by the Ku-DNA-dependent protein kinase complex. Mol Cell Biol 18(3):1349-58 PMID: 9488450
- Frit P, et al. (1998) Ku70/Ku80 protein complex inhibits the binding of nucleotide excision repair proteins on linear DNA in vitro. J Mol Biol 284(4):963-73 PMID: 9837719
- Nugent CI, et al. (1998) Telomere maintenance is dependent on activities required for end repair of double-strand breaks. Curr Biol 8(11):657-60 PMID: 9635193
- Polotnianka RM, et al. (1998) The yeast Ku heterodimer is essential for protection of the telomere against nucleolytic and recombinational activities. Curr Biol 8(14):831-4 PMID: 9663392
- Barnes G and Rio D (1997) DNA double-strand-break sensitivity, DNA replication, and cell cycle arrest phenotypes of Ku-deficient Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 94(3):867-72 PMID: 9023348
- Osipovich O, et al. (1997) Defining the minimal domain of Ku80 for interaction with Ku70. J Biol Chem 272(43):27259-65 PMID: 9341172
- Siede W, et al. (1996) The Saccharomyces cerevisiae Ku autoantigen homologue affects radiosensitivity only in the absence of homologous recombination. Genetics 142(1):91-102 PMID: 8770587