Reference: Yang P, et al. (2025) Engineered S. cerevisiae construction for high-gravity ethanol production and targeted metabolomics. Appl Microbiol Biotechnol 109(1):67

Reference Help

Abstract


Strong sugar tolerance and high bioethanol yield of yeast under high-gravity fermentation have caused great attention in the bioethanol industry. In this study, Clustered Regularly Interspaced Short Palindromic Repeats Cas9 (CRISPR-Cas9) technology was used to knock out S. cerevisiae GPD2, FPS1, ADH2, DLD3, ERG5, NTH1, and AMS1 to construct engineering strain S. cerevisiae GFADENA. Under high-gravity fermentation with 400 g/L of sucrose, S. cerevisiae GFADENA produced 135 g/L ethanol, which increased 17% compared with the wild-type strain. In addition, S. cerevisiae GFADENA produced 145 g/L of ethanol by simultaneous saccharification and fermentation (SSF) using 400 g/L of corn syrup with a sugar-ethanol conversion rate of 41.1%. Further, the targeted metabolomics involving energy, amino acid, and free fatty acid metabolisms were performed to unravel its molecular mechanisms. The deletion of seven genes in S. cerevisiae GFADENA caused a more significant effect on energy metabolism compared with amino acid and free fatty acid metabolisms based on the significantly different metabolites. Two metabolites α-ketoglutaric acid and fructose-1,6-bisphosphate were the most significantly different upregulation and downregulation metabolites, respectively (p < 0.05). Functions of metabolism, environmental information processing, and genetic information processing were related to sucrose tolerance enhancement and ethanol production increase in S. cerevisiae GFADENA by the regulation of significantly different metabolites. This study provided an effective pathway to increase ethanol yield and enhance sucrose tolerance in S. cerevisiae through bioengineering modification. KEY POINTS: • S. cerevisiae GFADENA with gene deletion was constructed by the CRISPR-Cas9 approach • S. cerevisiae GFADENA could produce ethanol using high-gravity fermentation condition • The ethanol yield of 145 g/L was produced using 400 g/L corn syrup by the SSF method.

Reference Type
Journal Article
Authors
Yang P, Feng J, Chen J
Primary Lit For
Additional Lit For
Review For

Gene Ontology Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene/Complex Qualifier Gene Ontology Term Aspect Annotation Extension Evidence Method Source Assigned On Reference

Phenotype Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details.

Gene Phenotype Experiment Type Mutant Information Strain Background Chemical Details Reference

Disease Annotations


Increase the total number of rows showing on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Disease Ontology Term Qualifier Evidence Method Source Assigned On Reference

Regulation Annotations


Increase the total number of rows displayed on this page using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; to filter the table by a specific experiment type, type a keyword into the Filter box (for example, “microarray”); download this table as a .txt file using the Download button or click Analyze to further view and analyze the list of target genes using GO Term Finder, GO Slim Mapper, or SPELL.

Regulator Target Direction Regulation Of Happens During Method Evidence

Post-translational Modifications


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Site Modification Modifier Reference

Interaction Annotations


Genetic Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Allele Assay Annotation Action Phenotype SGA score P-value Source Reference

Physical Interactions

Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through the table's pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table; click on the small "i" buttons located within a cell for an annotation to view further details about experiment type and any other genes involved in the interaction.

Interactor Interactor Assay Annotation Action Modification Source Reference

Functional Complementation Annotations


Increase the total number of rows showing on this page by using the pull-down located below the table, or use the page scroll at the table's top right to browse through its pages; use the arrows to the right of a column header to sort by that column; filter the table using the "Filter" box at the top of the table.

Gene Species Gene ID Strain background Direction Details Source Reference