Primary Literature
TEXT HERE
- Khan MM and Wilkens S (2024) Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase. EMBO Rep 25(5):2323-2347 PMID: 38565737
- Yanagisawa S, et al. (2024) Eukaryotic yeast V<sub>1</sub>-ATPase rotary mechanism insights revealed by high-resolution single-molecule studies. Front Mol Biosci 11:1269040 PMID: 38567099
- Keon KA, et al. (2022) Cryo-EM of the Yeast V<sub>O</sub> Complex Reveals Distinct Binding Sites for Macrolide V-ATPase Inhibitors. ACS Chem Biol 17(3):619-628 PMID: 35148071
- Khan MM, et al. (2022) Oxidative stress protein Oxr1 promotes V-ATPase holoenzyme disassembly in catalytic activity-independent manner. EMBO J 41(3):e109360 PMID: 34918374
- Vasanthakumar T, et al. (2022) Coordinated conformational changes in the V<sub>1</sub> complex during V-ATPase reversible dissociation. Nat Struct Mol Biol 29(5):430-439 PMID: 35469063
- Vasanthakumar T, et al. (2019) Structural comparison of the vacuolar and Golgi V-ATPases from <i>Saccharomyces cerevisiae</i>. Proc Natl Acad Sci U S A 116(15):7272-7277 PMID: 30910982
- Oot RA, et al. (2017) Breaking up and making up: The secret life of the vacuolar H<sup>+</sup> -ATPase. Protein Sci 26(5):896-909 PMID: 28247968
- Mazhab-Jafari MT, et al. (2016) Atomic model for the membrane-embedded V<sub>O</sub> motor of a eukaryotic V-ATPase. Nature 539(7627):118-122 PMID: 27776355
- Couoh-Cardel S, et al. (2015) Affinity Purification and Structural Features of the Yeast Vacuolar ATPase Vo Membrane Sector. J Biol Chem 290(46):27959-71 PMID: 26416888
- Tabke K, et al. (2014) Reversible disassembly of the yeast V-ATPase revisited under in vivo conditions. Biochem J 462(1):185-97 PMID: 24805887
- Oot RA and Wilkens S (2010) Domain characterization and interaction of the yeast vacuolar ATPase subunit C with the peripheral stator stalk subunits E and G. J Biol Chem 285(32):24654-64 PMID: 20529855
- Wang Y, et al. (2007) Arrangement of subunits in the proteolipid ring of the V-ATPase. J Biol Chem 282(47):34058-65 PMID: 17897940
- Davis-Kaplan SR, et al. (2006) PKR1 encodes an assembly factor for the yeast V-type ATPase. J Biol Chem 281(42):32025-35 PMID: 16926153
- Inoue T, et al. (2005) Structure and regulation of the V-ATPases. J Bioenerg Biomembr 37(6):393-8 PMID: 16691471
- Keenan Curtis K and Kane PM (2002) Novel vacuolar H+-ATPase complexes resulting from overproduction of Vma5p and Vma13p. J Biol Chem 277(4):2716-24 PMID: 11717306
- Perzov N, et al. (2002) Characterization of yeast V-ATPase mutants lacking Vph1p or Stv1p and the effect on endocytosis. J Exp Biol 205(Pt 9):1209-19 PMID: 11948198
- Kawasaki-Nishi S, et al. (2001) The amino-terminal domain of the vacuolar proton-translocating ATPase a subunit controls targeting and in vivo dissociation, and the carboxyl-terminal domain affects coupling of proton transport and ATP hydrolysis. J Biol Chem 276(50):47411-20 PMID: 11592965
- Leng XH, et al. (1996) Site-directed mutagenesis of the 100-kDa subunit (Vph1p) of the yeast vacuolar (H+)-ATPase. J Biol Chem 271(37):22487-93 PMID: 8798414
- Manolson MF, et al. (1994) STV1 gene encodes functional homologue of 95-kDa yeast vacuolar H(+)-ATPase subunit Vph1p. J Biol Chem 269(19):14064-74 PMID: 7514599
- Manolson MF, et al. (1992) The VPH1 gene encodes a 95-kDa integral membrane polypeptide required for in vivo assembly and activity of the yeast vacuolar H(+)-ATPase. J Biol Chem 267(20):14294-303 PMID: 1385813