Primary Literature
TEXT HERE
- Chik JK, et al. (2024) Non-canonical chromatin-based functions for the threonine metabolic pathway. Sci Rep 14(1):22629 PMID: 39349514
- Möller C, et al. (2024) Xrs2/NBS1 promote end-bridging activity of the MRE11-RAD50 complex. Biochem Biophys Res Commun 695:149464 PMID: 38217957
- Pizzul P, et al. (2024) Rif2 interaction with Rad50 counteracts Tel1 functions in checkpoint signalling and DNA tethering by releasing Tel1 from MRX binding. Nucleic Acids Res 52(5):2355-2371 PMID: 38180815
- Tamai T, et al. (2024) Sae2 controls Mre11 endo- and exonuclease activities by different mechanisms. Nat Commun 15(1):7221 PMID: 39174552
- Gnügge R, et al. (2023) Sequence and chromatin features guide DNA double-strand break resection initiation. Mol Cell 83(8):1237-1250.e15 PMID: 36917982
- Bordelet H, et al. (2022) Sir3 heterochromatin protein promotes non-homologous end joining by direct inhibition of Sae2. EMBO J 41(1):e108813 PMID: 34817085
- Kissling VM, et al. (2022) Mre11-Rad50 oligomerization promotes DNA double-strand break repair. Nat Commun 13(1):2374 PMID: 35501303
- Mojumdar A, et al. (2022) Nej1 interacts with Sae2 at DNA double-stranded breaks to inhibit DNA resection. J Biol Chem 298(6):101937 PMID: 35429499
- Mojumdar A, et al. (2022) Changes in DNA double-strand break repair during aging correlate with an increase in genomic mutations. J Mol Biol 434(20):167798 PMID: 35998703
- Ahmad S, et al. (2021) Antagonistic relationship of NuA4 with the non-homologous end-joining machinery at DNA damage sites. PLoS Genet 17(9):e1009816 PMID: 34543274
- Forey R, et al. (2021) A Role for the Mre11-Rad50-Xrs2 Complex in Gene Expression and Chromosome Organization. Mol Cell 81(1):183-197.e6 PMID: 33278361
- Roisné-Hamelin F, et al. (2021) Mechanism of MRX inhibition by Rif2 at telomeres. Nat Commun 12(1):2763 PMID: 33980827
- Gallagher DN, et al. (2020) A Rad51-independent pathway promotes single-strand template repair in gene editing. PLoS Genet 16(10):e1008689 PMID: 33057349
- Casari E, et al. (2019) Processing of DNA Double-Strand Breaks by the MRX Complex in a Chromatin Context. Front Mol Biosci 6:43 PMID: 31231660
- Hailemariam S, et al. (2019) The telomere-binding protein Rif2 and ATP-bound Rad50 have opposing roles in the activation of yeast Tel1<sup>ATM</sup> kinase. J Biol Chem 294(49):18846-18852 PMID: 31640985
- Keener R, et al. (2019) Tel1 Activation by the MRX Complex Is Sufficient for Telomere Length Regulation but Not for the DNA Damage Response in <i>Saccharomyces cerevisiae</i>. Genetics 213(4):1271-1288 PMID: 31645360
- Marsella A, et al. (2019) Structure-function relationships of the Mre11 protein in the control of DNA end bridging and processing. Curr Genet 65(1):11-16 PMID: 29922906
- Matsuzaki K and Shinohara M (2018) Casein kinase II phosphorylates the C-terminal region of Lif1 to promote the Lif1-Xrs2 interaction needed for non-homologous end joining. Biochem Biophys Res Commun 501(4):1080-1084 PMID: 29778533
- Menin L, et al. (2018) Tel1/ATM prevents degradation of replication forks that reverse after topoisomerase poisoning. EMBO Rep 19(7) PMID: 29739811
- Huang D, et al. (2016) DNA Replication Stress Phosphoproteome Profiles Reveal Novel Functional Phosphorylation Sites on Xrs2 in Saccharomyces cerevisiae. Genetics 203(1):353-68 PMID: 27017623
- Oh J, et al. (2016) Xrs2 Dependent and Independent Functions of the Mre11-Rad50 Complex. Mol Cell 64(2):405-415 PMID: 27746018
- van Mourik PM, et al. (2016) Recombination-Mediated Telomere Maintenance in Saccharomyces cerevisiae Is Not Dependent on the Shu Complex. PLoS One 11(3):e0151314 PMID: 26974669
- Bonetti D, et al. (2015) Escape of Sgs1 from Rad9 inhibition reduces the requirement for Sae2 and functional MRX in DNA end resection. EMBO Rep 16(3):351-61 PMID: 25637499
- Ferrari M, et al. (2015) Functional interplay between the 53BP1-ortholog Rad9 and the Mre11 complex regulates resection, end-tethering and repair of a double-strand break. PLoS Genet 11(1):e1004928 PMID: 25569305
- Gobbini E, et al. (2015) Sae2 Function at DNA Double-Strand Breaks Is Bypassed by Dampening Tel1 or Rad53 Activity. PLoS Genet 11(11):e1005685 PMID: 26584331
- Manfrini N, et al. (2015) RNA-processing proteins regulate Mec1/ATR activation by promoting generation of RPA-coated ssDNA. EMBO Rep 16(2):221-31 PMID: 25527408
- Ball LG, et al. (2014) The Mre11-Rad50-Xrs2 complex is required for yeast DNA postreplication repair. PLoS One 9(10):e109292 PMID: 25343618
- Cannavo E and Cejka P (2014) Sae2 promotes dsDNA endonuclease activity within Mre11-Rad50-Xrs2 to resect DNA breaks. Nature 514(7520):122-5 PMID: 25231868
- Clerici M, et al. (2014) Mec1/ATR regulates the generation of single-stranded DNA that attenuates Tel1/ATM signaling at DNA ends. EMBO J 33(3):198-216 PMID: 24357557
- Simoneau A, et al. (2014) Cdk1-dependent regulation of the Mre11 complex couples DNA repair pathways to cell cycle progression. Cell Cycle 13(7):1078-90 PMID: 24553123
- Ballew BJ and Lundblad V (2013) Multiple genetic pathways regulate replicative senescence in telomerase-deficient yeast. Aging Cell 12(4):719-27 PMID: 23672410
- Bentsen IB, et al. (2013) MRX protects fork integrity at protein-DNA barriers, and its absence causes checkpoint activation dependent on chromatin context. Nucleic Acids Res 41(5):3173-89 PMID: 23376930
- Muñoz-Galván S, et al. (2013) Competing roles of DNA end resection and non-homologous end joining functions in the repair of replication-born double-strand breaks by sister-chromatid recombination. Nucleic Acids Res 41(3):1669-83 PMID: 23254329
- Westmoreland JW and Resnick MA (2013) Coincident resection at both ends of random, γ-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease. PLoS Genet 9(3):e1003420 PMID: 23555316
- Dzierzbicki P, et al. (2012) The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex. Mutat Res 740(1-2):21-33 PMID: 23276591
- Ji J, et al. (2012) The role of OsCOM1 in homologous chromosome synapsis and recombination in rice meiosis. Plant J 72(1):18-30 PMID: 22507309
- Fukunaga K, et al. (2011) Activation of protein kinase Tel1 through recognition of protein-bound DNA ends. Mol Cell Biol 31(10):1959-71 PMID: 21402778
- Ho HC and Burgess SM (2011) Pch2 acts through Xrs2 and Tel1/ATM to modulate interhomolog bias and checkpoint function during meiosis. PLoS Genet 7(11):e1002351 PMID: 22072981
- Merchan S, et al. (2011) Genetic alterations leading to increases in internal potassium concentrations are detrimental for DNA integrity in Saccharomyces cerevisiae. Genes Cells 16(2):152-65 PMID: 21143561
- Nakai W, et al. (2011) Chromosome integrity at a double-strand break requires exonuclease 1 and MRX. DNA Repair (Amst) 10(1):102-10 PMID: 21115410
- Sundararajan R and Freudenreich CH (2011) Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae. PLoS Genet 7(3):e1001339 PMID: 21437275
- Bonetti D, et al. (2010) The MRX complex plays multiple functions in resection of Yku- and Rif2-protected DNA ends. PLoS One 5(11):e14142 PMID: 21152442
- Faure V, et al. (2010) Cdc13 and telomerase bind through different mechanisms at the lagging- and leading-strand telomeres. Mol Cell 38(6):842-52 PMID: 20620955
- Mimitou EP and Symington LS (2010) Ku prevents Exo1 and Sgs1-dependent resection of DNA ends in the absence of a functional MRX complex or Sae2. EMBO J 29(19):3358-69 PMID: 20729809
- Steininger S, et al. (2010) A novel function for the Mre11-Rad50-Xrs2 complex in base excision repair. Nucleic Acids Res 38(6):1853-65 PMID: 20040573
- Tittel-Elmer M, et al. (2009) The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress. EMBO J 28(8):1142-56 PMID: 19279665
- Bhattacharyya MK, et al. (2008) Mre11 nuclease and C-terminal tail-mediated DDR functions are required for initiating yeast telomere healing. Chromosoma 117(4):357-66 PMID: 18335232
- Gallardo F, et al. (2008) TLC1 RNA nucleo-cytoplasmic trafficking links telomerase biogenesis to its recruitment to telomeres. EMBO J 27(5):748-57 PMID: 18273059
- Steininger S, et al. (2008) Xrs2 facilitates crossovers during DNA double-strand gap repair in yeast. DNA Repair (Amst) 7(9):1563-77 PMID: 18599383
- Wu D, et al. (2008) Recruitment and dissociation of nonhomologous end joining proteins at a DNA double-strand break in Saccharomyces cerevisiae. Genetics 178(3):1237-49 PMID: 18245831
- Zhu Z, et al. (2008) Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 134(6):981-94 PMID: 18805091
- Borde V (2007) The multiple roles of the Mre11 complex for meiotic recombination. Chromosome Res 15(5):551-63 PMID: 17674145
- Gangavarapu V, et al. (2007) Requirement of RAD52 group genes for postreplication repair of UV-damaged DNA in Saccharomyces cerevisiae. Mol Cell Biol 27(21):7758-64 PMID: 17785441
- Ghosal G and Muniyappa K (2007) The characterization of Saccharomyces cerevisiae Mre11/Rad50/Xrs2 complex reveals that Rad50 negatively regulates Mre11 endonucleolytic but not the exonucleolytic activity. J Mol Biol 372(4):864-882 PMID: 17698079
- Mantiero D, et al. (2007) Dual role for Saccharomyces cerevisiae Tel1 in the checkpoint response to double-strand breaks. EMBO Rep 8(4):380-7 PMID: 17347674
- Tomizawa Y, et al. (2007) Rad50 is involved in MMS-induced recombination between homologous chromosomes in mitotic cells. Genes Genet Syst 82(2):157-60 PMID: 17507781
- Viscardi V, et al. (2007) MRX-dependent DNA damage response to short telomeres. Mol Biol Cell 18(8):3047-58 PMID: 17538011
- Clerici M, et al. (2006) The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep 7(2):212-8 PMID: 16374511
- Grenon M, et al. (2006) Double-strand breaks trigger MRX- and Mec1-dependent, but Tel1-independent, checkpoint activation. FEMS Yeast Res 6(5):836-47 PMID: 16879433
- Clatworthy AE, et al. (2005) The MRE11-RAD50-XRS2 complex, in addition to other non-homologous end-joining factors, is required for V(D)J joining in yeast. J Biol Chem 280(21):20247-52 PMID: 15757898
- Clerici M, et al. (2005) The Saccharomyces cerevisiae Sae2 protein promotes resection and bridging of double strand break ends. J Biol Chem 280(46):38631-8 PMID: 16162495
- Shima H, et al. (2005) Isolation and characterization of novel xrs2 mutations in Saccharomyces cerevisiae. Genetics 170(1):71-85 PMID: 15716496
- Smith S, et al. (2005) Suppression of gross chromosomal rearrangements by the multiple functions of the Mre11-Rad50-Xrs2 complex in Saccharomyces cerevisiae. DNA Repair (Amst) 4(5):606-17 PMID: 15811632
- Tsukamoto Y, et al. (2005) Xrs2p regulates Mre11p translocation to the nucleus and plays a role in telomere elongation and meiotic recombination. Mol Biol Cell 16(2):597-608 PMID: 15548595
- Williams B, et al. (2005) Mre 11 p nuclease activity is dispensable for telomeric rapid deletion. DNA Repair (Amst) 4(9):994-1005 PMID: 15990364
- Zhang X and Paull TT (2005) The Mre11/Rad50/Xrs2 complex and non-homologous end-joining of incompatible ends in S. cerevisiae. DNA Repair (Amst) 4(11):1281-94 PMID: 16043424
- Baroni E, et al. (2004) The functions of budding yeast Sae2 in the DNA damage response require Mec1- and Tel1-dependent phosphorylation. Mol Cell Biol 24(10):4151-65 PMID: 15121837
- Ira G, et al. (2004) DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 431(7011):1011-7 PMID: 15496928
- Larrivée M, et al. (2004) The generation of proper constitutive G-tails on yeast telomeres is dependent on the MRX complex. Genes Dev 18(12):1391-6 PMID: 15198981
- Grandin N and Charbonneau M (2003) Mitotic cyclins regulate telomeric recombination in telomerase-deficient yeast cells. Mol Cell Biol 23(24):9162-77 PMID: 14645528
- Diede SJ and Gottschling DE (2001) Exonuclease activity is required for sequence addition and Cdc13p loading at a de novo telomere. Curr Biol 11(17):1336-40 PMID: 11553326
- Tsukamoto Y, et al. (2001) The role of the Mre11-Rad50-Xrs2 complex in telomerase- mediated lengthening of Saccharomyces cerevisiae telomeres. Curr Biol 11(17):1328-35 PMID: 11553325