Primary Literature
TEXT HERE
- Filbeck S, et al. (2022) Ribosome-associated quality-control mechanisms from bacteria to humans. Mol Cell 82(8) PMID: 35452614
- Inada T (2020) Quality controls induced by aberrant translation. Nucleic Acids Res 48(3):1084-1096 PMID: 31950154
- Verma R, et al. (2018) Vms1 and ANKZF1 peptidyl-tRNA hydrolases release nascent chains from stalled ribosomes. Nature 557(7705):446-451 PMID: 29632312
- Wang J, et al. (2018) Multi-protein bridging factor 1(Mbf1), Rps3 and Asc1 prevent stalled ribosomes from frameshifting. Elife 7 PMID: 30465652
- Sitron CS, et al. (2017) Asc1, Hel2, and Slh1 couple translation arrest to nascent chain degradation. RNA 23(5):798-810 PMID: 28223409
- Yang J, et al. (2016) Spatial sequestration and detoxification of Huntingtin by the ribosome quality control complex. Elife 5 PMID: 27033550
- Shen PS, et al. (2015) Protein synthesis. Rqc2p and 60S ribosomal subunits mediate mRNA-independent elongation of nascent chains. Science 347(6217):75-8 PMID: 25554787
- Lykke-Andersen J and Bennett EJ (2014) Protecting the proteome: Eukaryotic cotranslational quality control pathways. J Cell Biol 204(4):467-76 PMID: 24535822
- Baek GH, et al. (2013) Cdc48: a swiss army knife of cell biology. J Amino Acids 2013:183421 PMID: 24167726
- Buchberger A (2013) Roles of Cdc48 in regulated protein degradation in yeast. Subcell Biochem 66:195-222 PMID: 23479442
- Defenouillère Q, et al. (2013) Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proc Natl Acad Sci U S A 110(13):5046-51 PMID: 23479637
- Brandman O, et al. (2012) A ribosome-bound quality control complex triggers degradation of nascent peptides and signals translation stress. Cell 151(5):1042-54 PMID: 23178123
- Bengtson MH and Joazeiro CA (2010) Role of a ribosome-associated E3 ubiquitin ligase in protein quality control. Nature 467(7314):470-3 PMID: 20835226