Primary Literature
TEXT HERE
- Ji Q, et al. (2023) Highly efficient overexpression and purification of multisubunit tethering complexes in Saccharomyces cerevisiae. Protein Expr Purif 212:106351 PMID: 37574178
- Gao J, et al. (2022) The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. J Cell Biol 221(5) PMID: 35404387
- Shvarev D, et al. (2022) Structure of the HOPS tethering complex, a lysosomal membrane fusion machinery. Elife 11 PMID: 36098503
- Song H and Wickner WT (2021) Fusion of tethered membranes can be driven by Sec18/NSF and Sec17/αSNAP without HOPS. Elife 10 PMID: 34698639
- D'Agostino M, et al. (2018) SNARE-mediated membrane fusion arrests at pore expansion to regulate the volume of an organelle. EMBO J 37(19) PMID: 30120144
- Hunter MR, et al. (2017) VPS18 recruits VPS41 to the human HOPS complex via a RING-RING interaction. Biochem J 474(21):3615-3626 PMID: 28931724
- Lürick A, et al. (2017) Multivalent Rab interactions determine tether-mediated membrane fusion. Mol Biol Cell 28(2):322-332 PMID: 27852901
- Ho R and Stroupe C (2016) The HOPS/Class C Vps Complex Tethers High-Curvature Membranes via a Direct Protein-Membrane Interaction. Traffic 17(10):1078-90 PMID: 27307091
- Bouchez I, et al. (2015) Regulation of lipid droplet dynamics in Saccharomyces cerevisiae depends on the Rab7-like Ypt7p, HOPS complex and V1-ATPase. Biol Open 4(7):764-75 PMID: 25948753
- Kuhlee A, et al. (2015) Functional homologies in vesicle tethering. FEBS Lett 589(19 Pt A):2487-97 PMID: 26072291
- Lürick A, et al. (2015) The Habc domain of the SNARE Vam3 interacts with the HOPS tethering complex to facilitate vacuole fusion. J Biol Chem 290(9):5405-13 PMID: 25564619
- Kingsbury JM, et al. (2014) Endolysosomal membrane trafficking complexes drive nutrient-dependent TORC1 signaling to control cell growth in Saccharomyces cerevisiae. Genetics 196(4):1077-89 PMID: 24514902
- Balderhaar HJ and Ungermann C (2013) CORVET and HOPS tethering complexes - coordinators of endosome and lysosome fusion. J Cell Sci 126(Pt 6):1307-16 PMID: 23645161
- Balderhaar HJ, et al. (2013) The CORVET complex promotes tethering and fusion of Rab5/Vps21-positive membranes. Proc Natl Acad Sci U S A 110(10):3823-8 PMID: 23417307
- Bennett TL, et al. (2013) LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro. PLoS One 8(2):e56798 PMID: 23437241
- Pols MS, et al. (2013) The HOPS proteins hVps41 and hVps39 are required for homotypic and heterotypic late endosome fusion. Traffic 14(2):219-32 PMID: 23167963
- Solinger JA and Spang A (2013) Tethering complexes in the endocytic pathway: CORVET and HOPS. FEBS J 280(12):2743-57 PMID: 23351085
- Bröcker C, et al. (2012) Molecular architecture of the multisubunit homotypic fusion and vacuole protein sorting (HOPS) tethering complex. Proc Natl Acad Sci U S A 109(6):1991-6 PMID: 22308417
- Stroupe C (2012) The yeast vacuolar Rab GTPase Ypt7p has an activity beyond membrane recruitment of the homotypic fusion and protein sorting-Class C Vps complex. Biochem J 443(1):205-11 PMID: 22417749
- Krämer L and Ungermann C (2011) HOPS drives vacuole fusion by binding the vacuolar SNARE complex and the Vam7 PX domain via two distinct sites. Mol Biol Cell 22(14):2601-11 PMID: 21613544
- Zlatic SA, et al. (2011) Metazoan cell biology of the HOPS tethering complex. Cell Logist 1(3):111-117 PMID: 21922076
- Wickner W (2010) Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu Rev Cell Dev Biol 26:115-36 PMID: 20521906
- Xu H, et al. (2010) HOPS prevents the disassembly of trans-SNARE complexes by Sec17p/Sec18p during membrane fusion. EMBO J 29(12):1948-60 PMID: 20473271
- Binda M, et al. (2009) The Vam6 GEF controls TORC1 by activating the EGO complex. Mol Cell 35(5):563-73 PMID: 19748353
- Cabrera M, et al. (2009) Vps41 phosphorylation and the Rab Ypt7 control the targeting of the HOPS complex to endosome-vacuole fusion sites. Mol Biol Cell 20(7):1937-48 PMID: 19193765
- Dove SK, et al. (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419(1):1-13 PMID: 19272020
- Mima J and Wickner W (2009) Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 284(40):27114-22 PMID: 19654322
- Mima J and Wickner W (2009) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 106(38):16191-6 PMID: 19805279
- Stroupe C, et al. (2009) Minimal membrane docking requirements revealed by reconstitution of Rab GTPase-dependent membrane fusion from purified components. Proc Natl Acad Sci U S A 106(42):17626-33 PMID: 19826089
- Starai VJ, et al. (2008) HOPS proofreads the trans-SNARE complex for yeast vacuole fusion. Mol Biol Cell 19(6):2500-8 PMID: 18385512
- Koumandou VL, et al. (2007) Control systems for membrane fusion in the ancestral eukaryote; evolution of tethering complexes and SM proteins. BMC Evol Biol 7:29 PMID: 17319956
- Peplowska K, et al. (2007) The CORVET tethering complex interacts with the yeast Rab5 homolog Vps21 and is involved in endo-lysosomal biogenesis. Dev Cell 12(5):739-50 PMID: 17488625
- Starai VJ, et al. (2007) Excess vacuolar SNAREs drive lysis and Rab bypass fusion. Proc Natl Acad Sci U S A 104(34):13551-8 PMID: 17699614
- Lindmo K, et al. (2006) A dual function for Deep orange in programmed autophagy in the Drosophila melanogaster fat body. Exp Cell Res 312(11):2018-27 PMID: 16600212
- Stroupe C, et al. (2006) Purification of active HOPS complex reveals its affinities for phosphoinositides and the SNARE Vam7p. EMBO J 25(8):1579-89 PMID: 16601699
- Collins KM, et al. (2005) Sec17p and HOPS, in distinct SNARE complexes, mediate SNARE complex disruption or assembly for fusion. EMBO J 24(10):1775-86 PMID: 15889152
- Wang CW, et al. (2003) Yeast homotypic vacuole fusion requires the Ccz1-Mon1 complex during the tethering/docking stage. J Cell Biol 163(5) PMID: 14662743
- Wang L, et al. (2003) Hierarchy of protein assembly at the vertex ring domain for yeast vacuole docking and fusion. J Cell Biol 160(3):365-74 PMID: 12566429
- Laage R and Ungermann C (2001) The N-terminal domain of the t-SNARE Vam3p coordinates priming and docking in yeast vacuole fusion. Mol Biol Cell 12(11):3375-85 PMID: 11694574
- Eitzen G, et al. (2000) Sequential action of two GTPases to promote vacuole docking and fusion. EMBO J 19(24):6713-20 PMID: 11118206
- Seals DF, et al. (2000) A Ypt/Rab effector complex containing the Sec1 homolog Vps33p is required for homotypic vacuole fusion. Proc Natl Acad Sci U S A 97(17):9402-7 PMID: 10944212
- Ungermann C, et al. (2000) A new role for a SNARE protein as a regulator of the Ypt7/Rab-dependent stage of docking. Proc Natl Acad Sci U S A 97(16):8889-91 PMID: 10908678