Primary Literature
TEXT HERE
- Michaelis AC, et al. (2023) The social and structural architecture of the yeast protein interactome. Nature 624(7990):192-200 PMID: 37968396
- Mittal C, et al. (2022) An integrated SAGA and TFIID PIC assembly pathway selective for poised and induced promoters. Genes Dev 36(17-18):985-1001 PMID: 36302553
- Warfield L, et al. (2022) Yeast Mediator facilitates transcription initiation at most promoters via a Tail-independent mechanism. Mol Cell 82(21):4033-4048.e7 PMID: 36208626
- Ben-Shem A, et al. (2021) Architecture of the multi-functional SAGA complex and the molecular mechanism of holding TBP. FEBS J 288(10):3135-3147 PMID: 32946670
- Chen H and Pugh BF (2021) What do Transcription Factors Interact With? J Mol Biol 433(14):166883 PMID: 33621520
- Donczew R and Hahn S (2021) BET family members Bdf1/2 modulate global transcription initiation and elongation in <i>Saccharomyces cerevisiae</i>. Elife 10 PMID: 34137374
- Nguyen VQ, et al. (2021) Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol Cell 81(17):3560-3575.e6 PMID: 34375585
- Petrenko N and Struhl K (2021) Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Elife 10 PMID: 34515029
- Rossi MJ, et al. (2021) A high-resolution protein architecture of the budding yeast genome. Nature 592(7853):309-314 PMID: 33692541
- Chen G, et al. (2020) Taf14 recognizes a common motif in transcriptional machineries and facilitates their clustering by phase separation. Nat Commun 11(1):4206 PMID: 32826896
- Donczew R, et al. (2020) Two roles for the yeast transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA. Elife 9 PMID: 31913117
- Fischer J, et al. (2020) The yeast exoribonuclease Xrn1 and associated factors modulate RNA polymerase II processivity in 5' and 3' gene regions. J Biol Chem 295(33):11435-11454 PMID: 32518159
- Iwami R, et al. (2020) The function of Spt3, a subunit of the SAGA complex, in PGK1 transcription is restored only partially when reintroduced by plasmid into taf1 spt3 double mutant yeast strains. Genes Genet Syst 95(3):151-163 PMID: 32624556
- Knoll ER, et al. (2020) Kin28 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in Saccharomyces cerevisiae. Nucleic Acids Res 48(8):4244-4255 PMID: 32182349
- Wang H, et al. (2020) Structure of the transcription coactivator SAGA. Nature 577(7792):717-720 PMID: 31969703
- Bhuiyan T and Timmers HTM (2019) Promoter Recognition: Putting TFIID on the Spot. Trends Cell Biol 29(9):752-763 PMID: 31300188
- Fischer V, et al. (2019) Global role for coactivator complexes in RNA polymerase II transcription. Transcription 10(1):29-36 PMID: 30299209
- Kasahara K, et al. (2019) Transcriptional activation is weakened when Taf1p N-terminal domain 1 is substituted with its Drosophila counterpart in yeast TFIID. Genes Genet Syst 94(1):51-59 PMID: 30905891
- Torok MS, et al. (2019) The Novel ReNu Region of TAF12 Regulates Gcn5 Nucleosomal Acetylation. J Mol Genet (Isleworth) 2(1) PMID: 32832935
- Dahiya R and Natarajan K (2018) Mutational analysis of TAF6 revealed the essential requirement of the histone-fold domain and the HEAT repeat domain for transcriptional activation. FEBS J 285(8):1491-1510 PMID: 29485702
- Donczew R and Hahn S (2018) Mechanistic Differences in Transcription Initiation at TATA-Less and TATA-Containing Promoters. Mol Cell Biol 38(1) PMID: 29038161
- Kolesnikova O, et al. (2018) Molecular structure of promoter-bound yeast TFIID. Nat Commun 9(1):4666 PMID: 30405110
- Sorrells TR, et al. (2018) Intrinsic cooperativity potentiates parallel <i>cis</i>-regulatory evolution. Elife 7 PMID: 30198843
- Uprety B, et al. (2018) TOR Facilitates the Targeting of the 19S Proteasome Subcomplex To Enhance Transcription Complex Assembly at the Promoters of the Ribosomal Protein Genes. Mol Cell Biol 38(14) PMID: 29712756
- Vinayachandran V, et al. (2018) Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res 28(3):357-366 PMID: 29444801
- Adachi N, et al. (2017) Improved method for soluble expression and rapid purification of yeast TFIIA. Protein Expr Purif 133:50-56 PMID: 28259734
- Baptista T, et al. (2017) SAGA Is a General Cofactor for RNA Polymerase II Transcription. Mol Cell 68(1):130-143.e5 PMID: 28918903
- Chen L, et al. (2017) HAL2 overexpression induces iron acquisition in bdf1Δ cells and enhances their salt resistance. Curr Genet 63(2):229-239 PMID: 27387517
- de Jonge WJ, et al. (2017) Molecular mechanisms that distinguish TFIID housekeeping from regulatable SAGA promoters. EMBO J 36(3):274-290 PMID: 27979920
- Gupta K, et al. (2017) Architecture of TAF11/TAF13/TBP complex suggests novel regulation properties of general transcription factor TFIID. Elife 6 PMID: 29111974
- Hantsche M and Cramer P (2017) Conserved RNA polymerase II initiation complex structure. Curr Opin Struct Biol 47:17-22 PMID: 28437704
- Hintze S, et al. (2017) Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis. Mol Microbiol 106(6):876-890 PMID: 28994223
- Johnson AN and Weil PA (2017) Identification of a transcriptional activation domain in yeast repressor activator protein 1 (Rap1) using an altered DNA-binding specificity variant. J Biol Chem 292(14):5705-5723 PMID: 28196871
- Joo YJ, et al. (2017) Downstream promoter interactions of TFIID TAFs facilitate transcription reinitiation. Genes Dev 31(21):2162-2174 PMID: 29203645
- Nemet J, et al. (2017) A meta-analysis reveals complex regulatory properties at Taf14-repressed genes. BMC Genomics 18(1):175 PMID: 28209126
- Taatjes DJ (2017) The Continuing SAGA of TFIID and RNA Polymerase II Transcription. Mol Cell 68(1):1-2 PMID: 28985500
- Warfield L, et al. (2017) Transcription of Nearly All Yeast RNA Polymerase II-Transcribed Genes Is Dependent on Transcription Factor TFIID. Mol Cell 68(1):118-129.e5 PMID: 28918900
- Watanabe K and Kokubo T (2017) SAGA mediates transcription from the TATA-like element independently of Taf1p/TFIID but dependent on core promoter structures in Saccharomyces cerevisiae. PLoS One 12(11):e0188435 PMID: 29176831
- Feigerle JT and Weil PA (2016) The C Terminus of the RNA Polymerase II Transcription Factor IID (TFIID) Subunit Taf2 Mediates Stable Association of Subunit Taf14 into the Yeast TFIID Complex. J Biol Chem 291(43):22721-22740 PMID: 27587401
- Grünberg S, et al. (2016) Mediator binding to UASs is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J 35(22):2435-2446 PMID: 27797823
- Nocetti N and Whitehouse I (2016) Nucleosome repositioning underlies dynamic gene expression. Genes Dev 30(6):660-72 PMID: 26966245
- Lewicki MC, et al. (2015) The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J Proteomics 118:39-48 PMID: 25434491
- Paul E, et al. (2015) Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast. Mol Cell Biol 35(1):331-42 PMID: 25368384
- Reja R, et al. (2015) Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev 29(18):1942-54 PMID: 26385964
- Uprety B, et al. (2015) Eaf1p Is Required for Recruitment of NuA4 in Targeting TFIID to the Promoters of the Ribosomal Protein Genes for Transcriptional Initiation In Vivo. Mol Cell Biol 35(17):2947-64 PMID: 26100014
- Bhattacharya S, et al. (2014) Structural and functional insight into TAF1-TAF7, a subcomplex of transcription factor II D. Proc Natl Acad Sci U S A 111(25):9103-8 PMID: 24927529
- Han Y, et al. (2014) Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 33(21):2534-46 PMID: 25216679
- Kamenova I, et al. (2014) Mutations on the DNA binding surface of TBP discriminate between yeast TATA and TATA-less gene transcription. Mol Cell Biol 34(15):2929-43 PMID: 24865972
- Kandiah E, et al. (2014) More pieces to the puzzle: recent structural insights into class II transcription initiation. Curr Opin Struct Biol 24:91-7 PMID: 24440461
- Saint M, et al. (2014) The TAF9 C-terminal conserved region domain is required for SAGA and TFIID promoter occupancy to promote transcriptional activation. Mol Cell Biol 34(9):1547-63 PMID: 24550006
- Soares LM, et al. (2014) Feedback control of Set1 protein levels is important for proper H3K4 methylation patterns. Cell Rep 6(6):961-972 PMID: 24613354
- Afek A and Lukatsky DB (2013) Genome-wide organization of eukaryotic preinitiation complex is influenced by nonconsensus protein-DNA binding. Biophys J 104(5):1107-15 PMID: 23473494
- Anandapadamanaban M, et al. (2013) High-resolution structure of TBP with TAF1 reveals anchoring patterns in transcriptional regulation. Nat Struct Mol Biol 20(8):1008-14 PMID: 23851461
- Chen L, et al. (2013) Hal2p functions in Bdf1p-involved salt stress response in Saccharomyces cerevisiae. PLoS One 8(4):e62110 PMID: 23614021
- Durand A, et al. (2013) Structure, assembly and dynamics of macromolecular complexes by single particle cryo-electron microscopy. J Nanobiotechnology 11 Suppl 1(Suppl 1):S4 PMID: 24565374
- Layer JH and Weil PA (2013) Direct TFIIA-TFIID protein contacts drive budding yeast ribosomal protein gene transcription. J Biol Chem 288(32):23273-94 PMID: 23814059
- Malik S, et al. (2013) Mechanisms of antisense transcription initiation from the 3' end of the GAL10 coding sequence in vivo. Mol Cell Biol 33(18):3549-67 PMID: 23836882
- Poss ZC, et al. (2013) The Mediator complex and transcription regulation. Crit Rev Biochem Mol Biol 48(6):575-608 PMID: 24088064
- Afek A and Lukatsky DB (2012) Nonspecific protein-DNA binding is widespread in the yeast genome. Biophys J 102(8):1881-8 PMID: 22768944
- Ansari SA, et al. (2012) Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J 31(1):44-57 PMID: 21971086
- Rhee HS and Pugh BF (2012) Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 483(7389):295-301 PMID: 22258509
- Spedale G, et al. (2012) Tight cooperation between Mot1p and NC2β in regulating genome-wide transcription, repression of transcription following heat shock induction and genetic interaction with SAGA. Nucleic Acids Res 40(3):996-1008 PMID: 21976730
- Uprety B, et al. (2012) The 19S proteasome subcomplex promotes the targeting of NuA4 HAT to the promoters of ribosomal protein genes to facilitate the recruitment of TFIID for transcriptional initiation in vivo. Nucleic Acids Res 40(5):1969-83 PMID: 22086954
- Bhaumik SR (2011) Distinct regulatory mechanisms of eukaryotic transcriptional activation by SAGA and TFIID. Biochim Biophys Acta 1809(2):97-108 PMID: 20800707
- Ghosh S and Pugh BF (2011) Sequential recruitment of SAGA and TFIID in a genomic response to DNA damage in Saccharomyces cerevisiae. Mol Cell Biol 31(1):190-202 PMID: 20956559
- Haarer B, et al. (2011) Novel interactions between actin and the proteasome revealed by complex haploinsufficiency. PLoS Genet 7(9):e1002288 PMID: 21966278
- Sugihara F, et al. (2011) Highly redundant function of multiple AT-rich sequences as core promoter elements in the TATA-less RPS5 promoter of Saccharomyces cerevisiae. Nucleic Acids Res 39(1):59-75 PMID: 20805245
- Takahata S, et al. (2011) Repressive chromatin affects factor binding at yeast HO (homothallic switching) promoter. J Biol Chem 286(40):34809-19 PMID: 21840992
- Venters BJ, et al. (2011) A comprehensive genomic binding map of gene and chromatin regulatory proteins in Saccharomyces. Mol Cell 41(4):480-92 PMID: 21329885
- Wansleeben C, et al. (2011) An ENU-induced point mutation in the mouse Btaf1 gene causes post-gastrulation embryonic lethality and protein instability. Mech Dev 128(5-6):279-88 PMID: 21419221
- Herbig E, et al. (2010) Mechanism of Mediator recruitment by tandem Gcn4 activation domains and three Gal11 activator-binding domains. Mol Cell Biol 30(10):2376-90 PMID: 20308326
- Layer JH, et al. (2010) Direct transactivator-transcription factor IID (TFIID) contacts drive yeast ribosomal protein gene transcription. J Biol Chem 285(20):15489-15499 PMID: 20189987
- Ohtsuki K, et al. (2010) Genome-wide localization analysis of a complete set of Tafs reveals a specific effect of the taf1 mutation on Taf2 occupancy and provides indirect evidence for different TFIID conformations at different promoters. Nucleic Acids Res 38(6):1805-20 PMID: 20026583
- Ohyama Y, et al. (2010) Saccharomyces cerevisiae Ssd1p promotes CLN2 expression by binding to the 5'-untranslated region of CLN2 mRNA. Genes Cells 15(12):1169-88 PMID: 20977549
- Papai G, et al. (2010) TFIIA and the transactivator Rap1 cooperate to commit TFIID for transcription initiation. Nature 465(7300):956-60 PMID: 20559389
- Schulze JM, et al. (2010) The YEATS domain of Taf14 in Saccharomyces cerevisiae has a negative impact on cell growth. Mol Genet Genomics 283(4):365-80 PMID: 20179968
- Tora L and Timmers HT (2010) The TATA box regulates TATA-binding protein (TBP) dynamics in vivo. Trends Biochem Sci 35(6):309-14 PMID: 20176488
- Venancio TM, et al. (2010) Robustness and evolvability in natural chemical resistance: identification of novel systems properties, biochemical mechanisms and regulatory interactions. Mol Biosyst 6(8):1475-91 PMID: 20517567
- Zhong P and Melcher K (2010) Identification and characterization of the activation domain of Ifh1, an activator of model TATA-less genes. Biochem Biophys Res Commun 392(1):77-82 PMID: 20059977
- Ahn SH, et al. (2009) Ctk1 promotes dissociation of basal transcription factors from elongating RNA polymerase II. EMBO J 28(3):205-12 PMID: 19131970
- Cler E, et al. (2009) Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 66(13):2123-34 PMID: 19308322
- Mischerikow N, et al. (2009) In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA. J Proteome Res 8(11):5020-30 PMID: 19731963
- Papai G, et al. (2009) Mapping the initiator binding Taf2 subunit in the structure of hydrated yeast TFIID. Structure 17(3):363-73 PMID: 19278651
- Takahashi H, et al. (2009) Saccharomyces cerevisiae Med9 comprises two functionally distinct domains that play different roles in transcriptional regulation. Genes Cells 14(1):53-67 PMID: 19077037
- van Werven FJ, et al. (2009) Distinct promoter dynamics of the basal transcription factor TBP across the yeast genome. Nat Struct Mol Biol 16(10):1043-8 PMID: 19767748
- Bjornsdottir G and Myers LC (2008) Minimal components of the RNA polymerase II transcription apparatus determine the consensus TATA box. Nucleic Acids Res 36(9):2906-16 PMID: 18385157
- Kasahara K, et al. (2008) Saccharomyces cerevisiae HMO1 interacts with TFIID and participates in start site selection by RNA polymerase II. Nucleic Acids Res 36(4):1343-57 PMID: 18187511
- Tomar RS, et al. (2008) Yeast Rap1 contributes to genomic integrity by activating DNA damage repair genes. EMBO J 27(11):1575-84 PMID: 18480842
- van Werven FJ, et al. (2008) Cooperative action of NC2 and Mot1p to regulate TATA-binding protein function across the genome. Genes Dev 22(17):2359-69 PMID: 18703679
- Zhang H, et al. (2008) Dissection of coactivator requirement at RNR3 reveals unexpected contributions from TFIID and SAGA. J Biol Chem 283(41):27360-27368 PMID: 18682387
- Durant M and Pugh BF (2007) NuA4-directed chromatin transactions throughout the Saccharomyces cerevisiae genome. Mol Cell Biol 27(15):5327-35 PMID: 17526728
- Florio C, et al. (2007) A study of biochemical and functional interactions of Htl1p, a putative component of the Saccharomyces cerevisiae, Rsc chromatin-remodeling complex. Gene 395(1-2):72-85 PMID: 17400406
- Garbett KA, et al. (2007) Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol 27(1):297-311 PMID: 17074814
- Huisinga KL and Pugh BF (2007) A TATA binding protein regulatory network that governs transcription complex assembly. Genome Biol 8(4):R46 PMID: 17407552
- James N, et al. (2007) A SAGA-independent function of SPT3 mediates transcriptional deregulation in a mutant of the Ccr4-not complex in Saccharomyces cerevisiae. Genetics 177(1):123-35 PMID: 17660549
- Lawit SJ, et al. (2007) Yeast two-hybrid map of Arabidopsis TFIID. Plant Mol Biol 64(1-2):73-87 PMID: 17340043
- Lim MK, et al. (2007) Gal11p dosage-compensates transcriptional activator deletions via Taf14p. J Mol Biol 374(1):9-23 PMID: 17919657
- Mal TK, et al. (2007) Functional silencing of TATA-binding protein (TBP) by a covalent linkage of the N-terminal domain of TBP-associated factor 1. J Biol Chem 282(30):22228-38 PMID: 17553784
- Natsume R, et al. (2007) Structure and function of the histone chaperone CIA/ASF1 complexed with histones H3 and H4. Nature 446(7133):338-41 PMID: 17293877
- Robles LM, et al. (2007) Arabidopsis enhanced ethylene response 4 encodes an EIN3-interacting TFIID transcription factor required for proper ethylene response, including ERF1 induction. J Exp Bot 58(10):2627-39 PMID: 17526916
- Romier C, et al. (2007) Crystal structure, biochemical and genetic characterization of yeast and E. cuniculi TAF(II)5 N-terminal domain: implications for TFIID assembly. J Mol Biol 368(5):1292-306 PMID: 17397863
- Sharma VM, et al. (2007) Histone deacetylases RPD3 and HOS2 regulate the transcriptional activation of DNA damage-inducible genes. Mol Cell Biol 27(8):3199-210 PMID: 17296735
- Vermeulen M, et al. (2007) Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 131(1):58-69 PMID: 17884155
- Wei Y, et al. (2007) A TAF4-homology domain from the corepressor ETO is a docking platform for positive and negative regulators of transcription. Nat Struct Mol Biol 14(7):653-61 PMID: 17572682
- Zhang H and Reese JC (2007) Exposing the core promoter is sufficient to activate transcription and alter coactivator requirement at RNR3. Proc Natl Acad Sci U S A 104(21):8833-8 PMID: 17502614
- Durant M and Pugh BF (2006) Genome-wide relationships between TAF1 and histone acetyltransferases in Saccharomyces cerevisiae. Mol Cell Biol 26(7):2791-802 PMID: 16537921
- Irvin JD and Pugh BF (2006) Genome-wide transcriptional dependence on TAF1 functional domains. J Biol Chem 281(10):6404-12 PMID: 16407318
- Raychaudhuri S, et al. (2006) Zuotin, a DnaJ molecular chaperone, stimulates cap-independent translation in yeast. Biochem Biophys Res Commun 350(3):788-95 PMID: 17027912
- Roberts GG and Hudson AP (2006) Transcriptome profiling of Saccharomyces cerevisiae during a transition from fermentative to glycerol-based respiratory growth reveals extensive metabolic and structural remodeling. Mol Genet Genomics 276(2):170-86 PMID: 16741729
- Uffenbeck SR and Krebs JE (2006) The role of chromatin structure in regulating stress-induced transcription in Saccharomyces cerevisiae. Biochem Cell Biol 84(4):477-89 PMID: 16936821
- Zanton SJ and Pugh BF (2006) Full and partial genome-wide assembly and disassembly of the yeast transcription machinery in response to heat shock. Genes Dev 20(16):2250-65 PMID: 16912275
- Davidson I, et al. (2005) New insights into TAFs as regulators of cell cycle and signaling pathways. Cell Cycle 4(11):1486-90 PMID: 16205117
- Fishburn J, et al. (2005) Function of a eukaryotic transcription activator during the transcription cycle. Mol Cell 18(3):369-78 PMID: 15866178
- Kabani M, et al. (2005) Anc1 interacts with the catalytic subunits of the general transcription factors TFIID and TFIIF, the chromatin remodeling complexes RSC and INO80, and the histone acetyltransferase complex NuA3. Biochem Biophys Res Commun 332(2):398-403 PMID: 15896708
- Lenssen E, et al. (2005) The Ccr4-Not complex independently controls both Msn2-dependent transcriptional activation--via a newly identified Glc7/Bud14 type I protein phosphatase module--and TFIID promoter distribution. Mol Cell Biol 25(1):488-98 PMID: 15601868
- Milgrom E, et al. (2005) TFIID and Spt-Ada-Gcn5-acetyltransferase functions probed by genome-wide synthetic genetic array analysis using a Saccharomyces cerevisiae taf9-ts allele. Genetics 171(3):959-73 PMID: 16118188
- Reeves WM and Hahn S (2005) Targets of the Gal4 transcription activator in functional transcription complexes. Mol Cell Biol 25(20):9092-102 PMID: 16199885
- Robinson MM, et al. (2005) Mapping and functional characterization of the TAF11 interaction with TFIIA. Mol Cell Biol 25(3):945-57 PMID: 15657423
- van Oevelen CJ, et al. (2005) Differential requirement of SAGA subunits for Mot1p and Taf1p recruitment in gene activation. Mol Cell Biol 25(12):4863-72 PMID: 15923605
- Wykoff DD and O'Shea EK (2005) Identification of sumoylated proteins by systematic immunoprecipitation of the budding yeast proteome. Mol Cell Proteomics 4(1):73-83 PMID: 15596868
- Zhang Z and Reese JC (2005) Molecular genetic analysis of the yeast repressor Rfx1/Crt1 reveals a novel two-step regulatory mechanism. Mol Cell Biol 25(17):7399-411 PMID: 16107689
- Auty R, et al. (2004) Purification of active TFIID from Saccharomyces cerevisiae. Extensive promoter contacts and co-activator function. J Biol Chem 279(48):49973-81 PMID: 15448131
- Basehoar AD, et al. (2004) Identification and distinct regulation of yeast TATA box-containing genes. Cell 116(5):699-709 PMID: 15006352
- Huisinga KL and Pugh BF (2004) A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 13(4):573-85 PMID: 14992726
- Kimura M and Ishihama A (2004) Tfg3, a subunit of the general transcription factor TFIIF in Schizosaccharomyces pombe, functions under stress conditions. Nucleic Acids Res 32(22):6706-15 PMID: 15616156
- Leurent C, et al. (2004) Mapping key functional sites within yeast TFIID. EMBO J 23(4):719-27 PMID: 14765106
- Liu Y, et al. (2004) Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol Cell Biol 24(4):1721-35 PMID: 14749387
- Mal TK, et al. (2004) Structural and functional characterization on the interaction of yeast TFIID subunit TAF1 with TATA-binding protein. J Mol Biol 339(4):681-93 PMID: 15165843
- Martinez-Campa C, et al. (2004) Precise nucleosome positioning and the TATA box dictate requirements for the histone H4 tail and the bromodomain factor Bdf1. Mol Cell 15(1):69-81 PMID: 15225549
- Oki M, et al. (2004) Barrier proteins remodel and modify chromatin to restrict silenced domains. Mol Cell Biol 24(5):1956-67 PMID: 14966276
- Powell DW, et al. (2004) Cluster analysis of mass spectrometry data reveals a novel component of SAGA. Mol Cell Biol 24(16):7249-59 PMID: 15282323
- Sawa C, et al. (2004) Bromodomain factor 1 (Bdf1) is phosphorylated by protein kinase CK2. Mol Cell Biol 24(11):4734-42 PMID: 15143168
- Singh MV, et al. (2004) Molecular and genetic characterization of a Taf1p domain essential for yeast TFIID assembly. Mol Cell Biol 24(11):4929-42 PMID: 15143185
- Takahata S, et al. (2004) Autonomous function of the amino-terminal inhibitory domain of TAF1 in transcriptional regulation. Mol Cell Biol 24(8):3089-99 PMID: 15060133
- Tamayo E, et al. (2004) Mediator is required for activated transcription in a Schizosaccharomyces pombe in vitro system. Eur J Biochem 271(12):2561-72 PMID: 15182371
- Warfield L, et al. (2004) Positive and negative functions of the SAGA complex mediated through interaction of Spt8 with TBP and the N-terminal domain of TFIIA. Genes Dev 18(9):1022-34 PMID: 15132995
- Wu PY, et al. (2004) Molecular architecture of the S. cerevisiae SAGA complex. Mol Cell 15(2):199-208 PMID: 15260971
- Zanton SJ and Pugh BF (2004) Changes in genomewide occupancy of core transcriptional regulators during heat stress. Proc Natl Acad Sci U S A 101(48):16843-8 PMID: 15548603
- Bleichenbacher M, et al. (2003) Novel interactions between the components of human and yeast TFIIA/TBP/DNA complexes. J Mol Biol 332(4):783-93 PMID: 12972251
- Denis CL and Chen J (2003) The CCR4-NOT complex plays diverse roles in mRNA metabolism. Prog Nucleic Acid Res Mol Biol 73:221-50 PMID: 12882519
- Escobar-Henriques M, et al. (2003) The critical cis-acting element required for IMD2 feedback regulation by GDP is a TATA box located 202 nucleotides upstream of the transcription start site. Mol Cell Biol 23(17):6267-78 PMID: 12917347
- Klein J, et al. (2003) Use of a genetically introduced cross-linker to identify interaction sites of acidic activators within native transcription factor IID and SAGA. J Biol Chem 278(9):6779-86 PMID: 12501245
- Kobayashi A, et al. (2003) Mutations in the histone fold domain of the TAF12 gene show synthetic lethality with the TAF1 gene lacking the TAF N-terminal domain (TAND) by different mechanisms from those in the SPT15 gene encoding the TATA box-binding protein (TBP). Nucleic Acids Res 31(4):1261-74 PMID: 12582246
- Kou H, et al. (2003) Structural and functional analysis of mutations along the crystallographic dimer interface of the yeast TATA binding protein. Mol Cell Biol 23(9):3186-201 PMID: 12697819
- Krogan NJ, et al. (2003) A Snf2 family ATPase complex required for recruitment of the histone H2A variant Htz1. Mol Cell 12(6):1565-76 PMID: 14690608
- Ladurner AG, et al. (2003) Bromodomains mediate an acetyl-histone encoded antisilencing function at heterochromatin boundaries. Mol Cell 11(2):365-76 PMID: 12620225
- Matangkasombut O and Buratowski S (2003) Different sensitivities of bromodomain factors 1 and 2 to histone H4 acetylation. Mol Cell 11(2):353-63 PMID: 12620224
- Pereira LA, et al. (2003) Roles for BTAF1 and Mot1p in dynamics of TATA-binding protein and regulation of RNA polymerase II transcription. Gene 315:1-13 PMID: 14557059
- Sakurai H and Fukasawa T (2003) Artificial recruitment of certain Mediator components affects requirement of basal transcription factor IIE. Genes Cells 8(1):41-50 PMID: 12558798
- Sharma VM, et al. (2003) SWI/SNF-dependent chromatin remodeling of RNR3 requires TAF(II)s and the general transcription machinery. Genes Dev 17(4):502-15 PMID: 12600943
- Shen WC, et al. (2003) Systematic analysis of essential yeast TAFs in genome-wide transcription and preinitiation complex assembly. EMBO J 22(13):3395-402 PMID: 12840001
- Takahata S, et al. (2003) Identification of a novel TATA element-binding protein binding region at the N terminus of the Saccharomyces cerevisiae TAF1 protein. J Biol Chem 278(46):45888-902 PMID: 12939271
- Yatherajam G, et al. (2003) Protein-protein interaction map for yeast TFIID. Nucleic Acids Res 31(4):1252-60 PMID: 12582245
- Chen BS and Hampsey M (2002) Transcription activation: unveiling the essential nature of TFIID. Curr Biol 12(18):R620-2 PMID: 12372267
- Chimura T, et al. (2002) Identification and characterization of CIA/ASF1 as an interactor of bromodomains associated with TFIID. Proc Natl Acad Sci U S A 99(14):9334-9 PMID: 12093919
- Fischbeck JA, et al. (2002) SPN1, a conserved gene identified by suppression of a postrecruitment-defective yeast TATA-binding protein mutant. Genetics 162(4):1605-16 PMID: 12524336
- Hecht K, et al. (2002) Polycistronic gene expression in yeast versus cryptic promoter elements. FEMS Yeast Res 2(2):215-24 PMID: 12702309
- Kirschner DB, et al. (2002) Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns. Mol Cell Biol 22(9):3178-93 PMID: 11940675
- Lenssen E, et al. (2002) Saccharomyces cerevisiae Ccr4-not complex contributes to the control of Msn2p-dependent transcription by the Ras/cAMP pathway. Mol Microbiol 43(4):1023-37 PMID: 11929548
- Leurent C, et al. (2002) Mapping histone fold TAFs within yeast TFIID. EMBO J 21(13):3424-33 PMID: 12093743
- Li XY, et al. (2002) Selective recruitment of TAFs by yeast upstream activating sequences. Implications for eukaryotic promoter structure. Curr Biol 12(14):1240-4 PMID: 12176335
- Mencía M, et al. (2002) Activator-specific recruitment of TFIID and regulation of ribosomal protein genes in yeast. Mol Cell 9(4):823-33 PMID: 11983173
- Mitsuzawa H and Ishihama A (2002) Identification of histone H4-like TAF in Schizosaccharomyces pombe as a protein that interacts with WD repeat-containing TAF. Nucleic Acids Res 30(9):1952-8 PMID: 11972332
- Padmanabhan B, et al. (2002) Purification, crystallization and preliminary X-ray diffraction analysis of yeast nucleosome-assembly factor Cia1p. Acta Crystallogr D Biol Crystallogr 58(Pt 10 Pt 2):1876-8 PMID: 12351844
- Sanders SL, et al. (2002) Molecular characterization of Saccharomyces cerevisiae TFIID. Mol Cell Biol 22(16):6000-13 PMID: 12138208
- Sanders SL, et al. (2002) Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol Cell Biol 22(13):4723-38 PMID: 12052880
- Sun L, et al. (2002) Physical association of the APIS complex and general transcription factors. Biochem Biophys Res Commun 296(4):991-9 PMID: 12200147
- Thuault S, et al. (2002) Functional analysis of the TFIID-specific yeast TAF4 (yTAF(II)48) reveals an unexpected organization of its histone-fold domain. J Biol Chem 277(47):45510-7 PMID: 12237303
- Umehara T, et al. (2002) Polyanionic stretch-deleted histone chaperone cia1/Asf1p is functional both in vivo and in vitro. Genes Cells 7(1):59-73 PMID: 11856374
- Chen J, et al. (2001) Purification and characterization of the 1.0 MDa CCR4-NOT complex identifies two novel components of the complex. J Mol Biol 314(4):683-94 PMID: 11733989
- Durso RJ, et al. (2001) Analysis of TAF90 mutants displaying allele-specific and broad defects in transcription. Mol Cell Biol 21(21):7331-44 PMID: 11585915
- Gangloff YG, et al. (2001) Histone folds mediate selective heterodimerization of yeast TAF(II)25 with TFIID components yTAF(II)47 and yTAF(II)65 and with SAGA component ySPT7. Mol Cell Biol 21(5):1841-53 PMID: 11238921
- Gangloff YG, et al. (2001) The histone fold is a key structural motif of transcription factor TFIID. Trends Biochem Sci 26(4):250-7 PMID: 11295558
- Kirchner J, et al. (2001) Molecular genetic dissection of TAF25, an essential yeast gene encoding a subunit shared by TFIID and SAGA multiprotein transcription factors. Mol Cell Biol 21(19):6668-80 PMID: 11533254
- Kobayashi A, et al. (2001) Mutations in the TATA-binding protein, affecting transcriptional activation, show synthetic lethality with the TAF145 gene lacking the TAF N-terminal domain in Saccharomyces cerevisiae. J Biol Chem 276(1):395-405 PMID: 11035037
- Kraemer SM, et al. (2001) TFIIA interacts with TFIID via association with TATA-binding protein and TAF40. Mol Cell Biol 21(5):1737-46 PMID: 11238911
- Martens C, et al. (2001) RNA polymerase II and TBP occupy the repressed CYC1 promoter. Mol Microbiol 40(4):1009-19 PMID: 11401707
- Mencía M and Struhl K (2001) Region of yeast TAF 130 required for TFIID to associate with promoters. Mol Cell Biol 21(4):1145-54 PMID: 11158301
- Selleck W, et al. (2001) A histone fold TAF octamer within the yeast TFIID transcriptional coactivator. Nat Struct Biol 8(8):695-700 PMID: 11473260
- Solow S, et al. (2001) Taf(II) 250 phosphorylates human transcription factor IIA on serine residues important for TBP binding and transcription activity. J Biol Chem 276(19):15886-92 PMID: 11278496
- Tsukihashi Y, et al. (2001) Requirement for yeast TAF145 function in transcriptional activation of the RPS5 promoter that depends on both core promoter structure and upstream activating sequences. J Biol Chem 276(28):25715-26 PMID: 11337503
- Walker AK, et al. (2001) Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. EMBO J 20(18):5269-79 PMID: 11566890
- Yamaki M, et al. (2001) Cell death with predominant apoptotic features in Saccharomyces cerevisiae mediated by deletion of the histone chaperone ASF1/CIA1. Genes Cells 6(12):1043-54 PMID: 11737265
- Albright SR and Tjian R (2000) TAFs revisited: more data reveal new twists and confirm old ideas. Gene 242(1-2):1-13 PMID: 10721692
- Badarinarayana V, et al. (2000) Functional interaction of CCR4-NOT proteins with TATAA-binding protein (TBP) and its associated factors in yeast. Genetics 155(3):1045-54 PMID: 10880468
- Campbell KM, et al. (2000) Reevaluation of transcriptional regulation by TATA-binding protein oligomerization: predominance of monomers. Biochemistry 39(10):2633-8 PMID: 10704213
- Chen Z and Manley JL (2000) Robust mRNA transcription in chicken DT40 cells depleted of TAF(II)31 suggests both functional degeneracy and evolutionary divergence. Mol Cell Biol 20(14):5064-76 PMID: 10866663
- Furukawa T and Tanese N (2000) Assembly of partial TFIID complexes in mammalian cells reveals distinct activities associated with individual TATA box-binding protein-associated factors. J Biol Chem 275(38):29847-56 PMID: 10896937
- Gangloff YG, et al. (2000) The human TFIID components TAF(II)135 and TAF(II)20 and the yeast SAGA components ADA1 and TAF(II)68 heterodimerize to form histone-like pairs. Mol Cell Biol 20(1):340-51 PMID: 10594036
- Geisberg JV and Struhl K (2000) TATA-binding protein mutants that increase transcription from enhancerless and repressed promoters in vivo. Mol Cell Biol 20(5):1478-88 PMID: 10669725
- Georgieva S, et al. (2000) Two novel Drosophila TAF(II)s have homology with human TAF(II)30 and are differentially regulated during development. Mol Cell Biol 20(5):1639-48 PMID: 10669741
- John S, et al. (2000) The something about silencing protein, Sas3, is the catalytic subunit of NuA3, a yTAF(II)30-containing HAT complex that interacts with the Spt16 subunit of the yeast CP (Cdc68/Pob3)-FACT complex. Genes Dev 14(10):1196-208 PMID: 10817755
- Kotani T, et al. (2000) A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID. Proc Natl Acad Sci U S A 97(13):7178-83 PMID: 10852950
- Kuras L, et al. (2000) TAF-Containing and TAF-independent forms of transcriptionally active TBP in vivo. Science 288(5469):1244-8 PMID: 10818000
- Lee TI, et al. (2000) Redundant roles for the TFIID and SAGA complexes in global transcription. Nature 405(6787):701-4 PMID: 10864329
- Lemaire M and Collart MA (2000) The TATA-binding protein-associated factor yTafII19p functionally interacts with components of the global transcriptional regulator Ccr4-Not complex and physically interacts with the Not5 subunit. J Biol Chem 275(35):26925-34 PMID: 10864925
- Li B and Reese JC (2000) Derepression of DNA damage-regulated genes requires yeast TAF(II)s. EMBO J 19(15):4091-100 PMID: 10921889
- Li XY, et al. (2000) Distinct classes of yeast promoters revealed by differential TAF recruitment. Science 288(5469):1242-4 PMID: 10817999
- Macpherson N, et al. (2000) A yeast taf17 mutant requires the Swi6 transcriptional activator for viability and shows defects in cell cycle-regulated transcription. Genetics 154(4):1561-76 PMID: 10747053
- Matangkasombut O, et al. (2000) Bromodomain factor 1 corresponds to a missing piece of yeast TFIID. Genes Dev 14(8):951-62 PMID: 10783167
- Nogales E (2000) Recent structural insights into transcription preinitiation complexes. J Cell Sci 113 Pt 24:4391-7 PMID: 11082032
- Reese JC, et al. (2000) Identification of a yeast transcription factor IID subunit, TSG2/TAF48. J Biol Chem 275(23):17391-8 PMID: 10751405
- Ryan MP, et al. (2000) Artificially recruited TATA-binding protein fails to remodel chromatin and does not activate three promoters that require chromatin remodeling. Mol Cell Biol 20(16):5847-57 PMID: 10913168
- Sanders SL and Weil PA (2000) Identification of two novel TAF subunits of the yeast Saccharomyces cerevisiae TFIID complex. J Biol Chem 275(18):13895-900 PMID: 10788514
- Tsukihashi Y, et al. (2000) Impaired core promoter recognition caused by novel yeast TAF145 mutations can be restored by creating a canonical TATA element within the promoter region of the TUB2 gene. Mol Cell Biol 20(7):2385-99 PMID: 10713163
- Yudkovsky N, et al. (2000) A transcription reinitiation intermediate that is stabilized by activator. Nature 408(6809):225-9 PMID: 11089979
- Bai Y, et al. (1999) The CCR4 and CAF1 proteins of the CCR4-NOT complex are physically and functionally separated from NOT2, NOT4, and NOT5. Mol Cell Biol 19(10):6642-51 PMID: 10490603
- Berk AJ (1999) Activation of RNA polymerase II transcription. Curr Opin Cell Biol 11(3):330-5 PMID: 10395559
- Chou S, et al. (1999) Transcriptional activation in yeast cells lacking transcription factor IIA. Genetics 153(4):1573-81 PMID: 10581267
- Coleman RA, et al. (1999) TFIIA regulates TBP and TFIID dimers. Mol Cell 4(3):451-7 PMID: 10518227
- Keaveney M and Struhl K (1999) Incorporation of Drosophila TAF110 into the yeast TFIID complex does not permit the Sp1 glutamine-rich activation domain to function in vivo. Genes Cells 4(4):197-203 PMID: 10336691
- Komarnitsky PB, et al. (1999) TFIID-specific yeast TAF40 is essential for the majority of RNA polymerase II-mediated transcription in vivo. Genes Dev 13(19):2484-9 PMID: 10521393
- Liu Q, et al. (1999) Analysis of TFIIA function In vivo: evidence for a role in TATA-binding protein recruitment and gene-specific activation. Mol Cell Biol 19(12):8673-85 PMID: 10567590
- Maldonado E and Allende JE (1999) Phosphorylation of yeast TBP by protein kinase CK2 reduces its specific binding to DNA. FEBS Lett 443(3):256-60 PMID: 10025943
- Ranallo RT, et al. (1999) A TATA-binding protein mutant defective for TFIID complex formation in vivo. Mol Cell Biol 19(6):3951-7 PMID: 10330135
- Ranish JA, et al. (1999) Intermediates in formation and activity of the RNA polymerase II preinitiation complex: holoenzyme recruitment and a postrecruitment role for the TATA box and TFIIB. Genes Dev 13(1):49-63 PMID: 9887099
- Sanders SL, et al. (1999) TAF25p, a non-histone-like subunit of TFIID and SAGA complexes, is essential for total mRNA gene transcription in vivo. J Biol Chem 274(27):18847-50 PMID: 10383379
- Shibuya T, et al. (1999) Characterization of the ptr6(+) gene in fission yeast: a possible involvement of a transcriptional coactivator TAF in nucleocytoplasmic transport of mRNA. Genetics 152(3):869-80 PMID: 10388808
- Apone LM, et al. (1998) Broad, but not universal, transcriptional requirement for yTAFII17, a histone H3-like TAFII present in TFIID and SAGA. Mol Cell 2(5):653-61 PMID: 9844637
- Birck C, et al. (1998) Human TAF(II)28 and TAF(II)18 interact through a histone fold encoded by atypical evolutionary conserved motifs also found in the SPT3 family. Cell 94(2):239-49 PMID: 9695952
- Coin F, et al. (1998) TATA binding protein discriminates between different lesions on DNA, resulting in a transcription decrease. Mol Cell Biol 18(7):3907-14 PMID: 9632775
- Cutler G, et al. (1998) Adf-1 is a nonmodular transcription factor that contains a TAF-binding Myb-like motif. Mol Cell Biol 18(4):2252-61 PMID: 9528796
- Davidson I, et al. (1998) Functional and structural analysis of the subunits of human transcription factor TFIID. Cold Spring Harb Symp Quant Biol 63:233-41 PMID: 10384287
- Drysdale CM, et al. (1998) The Gcn4p activation domain interacts specifically in vitro with RNA polymerase II holoenzyme, TFIID, and the Adap-Gcn5p coactivator complex. Mol Cell Biol 18(3):1711-24 PMID: 9488488
- Grant PA, et al. (1998) A subset of TAF(II)s are integral components of the SAGA complex required for nucleosome acetylation and transcriptional stimulation. Cell 94(1):45-53 PMID: 9674426
- Holstege FC, et al. (1998) Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5):717-28 PMID: 9845373
- Kokubo T, et al. (1998) The yeast TAF145 inhibitory domain and TFIIA competitively bind to TATA-binding protein. Mol Cell Biol 18(2):1003-12 PMID: 9447997
- Komarnitsky PB, et al. (1998) ADR1-mediated transcriptional activation requires the presence of an intact TFIID complex. Mol Cell Biol 18(10):5861-7 PMID: 9742103
- Kotani T, et al. (1998) Identification of highly conserved amino-terminal segments of dTAFII230 and yTAFII145 that are functionally interchangeable for inhibiting TBP-DNA interactions in vitro and in promoting yeast cell growth in vivo. J Biol Chem 273(48):32254-64 PMID: 9822704
- Liu D, et al. (1998) Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 94(5):573-83 PMID: 9741622
- Martinez E, et al. (1998) A human SPT3-TAFII31-GCN5-L acetylase complex distinct from transcription factor IID. J Biol Chem 273(37):23781-5 PMID: 9726987
- Michel B, et al. (1998) Histone-like TAFs are essential for transcription in vivo. Mol Cell 2(5):663-73 PMID: 9844638
- Moqtaderi Z, et al. (1998) The histone H3-like TAF is broadly required for transcription in yeast. Mol Cell 2(5):675-82 PMID: 9844639
- Natarajan K, et al. (1998) yTAFII61 has a general role in RNA polymerase II transcription and is required by Gcn4p to recruit the SAGA coactivator complex. Mol Cell 2(5):683-92 PMID: 9844640
- Oberholzer U and Collart MA (1998) Characterization of NOT5 that encodes a new component of the Not protein complex. Gene 207(1):61-9 PMID: 9511744
- Ogryzko VV, et al. (1998) Histone-like TAFs within the PCAF histone acetylase complex. Cell 94(1):35-44 PMID: 9674425
- Ryan MP, et al. (1998) SWI-SNF complex participation in transcriptional activation at a step subsequent to activator binding. Mol Cell Biol 18(4):1774-82 PMID: 9528749
- Blair WS and Cullen BR (1997) A yeast TATA-binding protein mutant that selectively enhances gene expression from weak RNA polymerase II promoters. Mol Cell Biol 17(5):2888-96 PMID: 9111361
- Chang M and Jaehning JA (1997) A multiplicity of mediators: alternative forms of transcription complexes communicate with transcriptional regulators. Nucleic Acids Res 25(24):4861-5 PMID: 9396788
- Gonzalez-Couto E, et al. (1997) Synergistic and promoter-selective activation of transcription by recruitment of transcription factors TFIID and TFIIB. Proc Natl Acad Sci U S A 94(15):8036-41 PMID: 9223310
- Hori R and Carey M (1997) Protease footprinting analysis of ternary complex formation by human TFIIA. J Biol Chem 272(2):1180-7 PMID: 8995419
- Kadosh D and Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89(3):365-71 PMID: 9150136
- Pan G, et al. (1997) Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators. J Biol Chem 272(39):24563-71 PMID: 9305922
- van der Knaap JA, et al. (1997) Cloning of the cDNA for the TATA-binding protein-associated factorII170 subunit of transcription factor B-TFIID reveals homology to global transcription regulators in yeast and Drosophila. Proc Natl Acad Sci U S A 94(22):11827-32 PMID: 9342322
- Walker SS, et al. (1997) Yeast TAF(II)145 required for transcription of G1/S cyclin genes and regulated by the cellular growth state. Cell 90(4):607-14 PMID: 9288741
- Yamamoto T, et al. (1997) Molecular genetic elucidation of the tripartite structure of the Schizosaccharomyces pombe 72 kDa TFIID subunit which contains a WD40 structural motif. Genes Cells 2(4):245-54 PMID: 9224658
- Apone LM, et al. (1996) Yeast TAF(II)90 is required for cell-cycle progression through G2/M but not for general transcription activation. Genes Dev 10(18):2368-80 PMID: 8824595
- Cairns BR, et al. (1996) TFG/TAF30/ANC1, a component of the yeast SWI/SNF complex that is similar to the leukemogenic proteins ENL and AF-9. Mol Cell Biol 16(7):3308-16 PMID: 8668146
- Collart MA (1996) The NOT, SPT3, and MOT1 genes functionally interact to regulate transcription at core promoters. Mol Cell Biol 16(12):6668-76 PMID: 8943321
- Dubrovskaya V, et al. (1996) Distinct domains of hTAFII100 are required for functional interaction with transcription factor TFIIF beta (RAP30) and incorporation into the TFIID complex. EMBO J 15(14):3702-12 PMID: 8758937
- Mizzen CA, et al. (1996) The TAF(II)250 subunit of TFIID has histone acetyltransferase activity. Cell 87(7):1261-70 PMID: 8980232
- Moqtaderi Z, et al. (1996) Yeast homologues of higher eukaryotic TFIID subunits. Proc Natl Acad Sci U S A 93(25):14654-8 PMID: 8962109
- Moqtaderi Z, et al. (1996) TBP-associated factors are not generally required for transcriptional activation in yeast. Nature 383(6596):188-91 PMID: 8774887
- Ozer J, et al. (1996) Transcription factor IIA mutations show activator-specific defects and reveal a IIA function distinct from stimulation of TBP-DNA binding. J Biol Chem 271(19):11182-90 PMID: 8626665
- Stargell LA and Struhl K (1996) Mechanisms of transcriptional activation in vivo: two steps forward. Trends Genet 12(8):311-5 PMID: 8783941
- Wade PA and Jaehning JA (1996) Transcriptional corepression in vitro: a Mot1p-associated form of TATA-binding protein is required for repression by Leu3p. Mol Cell Biol 16(4):1641-8 PMID: 8657139
- Walker SS, et al. (1996) Transcription activation in cells lacking TAFIIS. Nature 383(6596):185-8 PMID: 8774886
- Klages N and Strubin M (1995) Stimulation of RNA polymerase II transcription initiation by recruitment of TBP in vivo. Nature 374(6525):822-3 PMID: 7723829
- Mengus G, et al. (1995) Cloning and characterization of hTAFII18, hTAFII20 and hTAFII28: three subunits of the human transcription factor TFIID. EMBO J 14(7):1520-31 PMID: 7729427
- Poon D, et al. (1995) Identification and characterization of a TFIID-like multiprotein complex from Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 92(18):8224-8 PMID: 7667272
- Sunkin SM and Stringer JR (1995) Transcription factor genes from rat Pneumocystis carinii. J Eukaryot Microbiol 42(1):12-9 PMID: 7728137
- Whitehall SK, et al. (1995) The symmetry of the yeast U6 RNA gene's TATA box and the orientation of the TATA-binding protein in yeast TFIIIB. Genes Dev 9(23):2974-85 PMID: 7498793
- Zhou Q and Berk AJ (1995) The yeast TATA-binding protein (TBP) core domain assembles with human TBP-associated factors into a functional TFIID complex. Mol Cell Biol 15(1):534-9 PMID: 7799963
- Bernstein R, et al. (1994) Characterization of the highly conserved TFIIA small subunit from Drosophila melanogaster. J Biol Chem 269(39):24361-6 PMID: 7929095
- Chen J, et al. (1994) Binding of TFIID to the CYC1 TATA boxes in yeast occurs independently of upstream activating sequences. Proc Natl Acad Sci U S A 91(25):11909-13 PMID: 7991556
- Collart MA and Struhl K (1994) NOT1(CDC39), NOT2(CDC36), NOT3, and NOT4 encode a global-negative regulator of transcription that differentially affects TATA-element utilization. Genes Dev 8(5):525-37 PMID: 7926748
- Iizuka N, et al. (1994) Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae. Mol Cell Biol 14(11):7322-30 PMID: 7935446
- Kim TK and Roeder RG (1994) Proline-rich activator CTF1 targets the TFIIB assembly step during transcriptional activation. Proc Natl Acad Sci U S A 91(10):4170-4 PMID: 8183887
- Kim TK, et al. (1994) Effects of activation-defective TBP mutations on transcription initiation in yeast. Nature 369(6477):252-5 PMID: 8183347
- Mallet L, et al. (1994) Nucleotide sequence analysis of an 11.7 kb fragment of yeast chromosome II including BEM1, a new gene of the WD-40 repeat family and a new member of the KRE2/MNT1 family. Yeast 10(6):819-31 PMID: 7975899
- Ozer J, et al. (1994) Molecular cloning of the small (gamma) subunit of human TFIIA reveals functions critical for activated transcription. Genes Dev 8(19):2324-35 PMID: 7958899
- Reese JC, et al. (1994) Yeast TAFIIS in a multisubunit complex required for activated transcription. Nature 371(6497):523-7 PMID: 7935765
- Verrijzer CP, et al. (1994) Drosophila TAFII150: similarity to yeast gene TSM-1 and specific binding to core promoter DNA. Science 264(5161):933-41 PMID: 8178153
- Xiao H, et al. (1994) Binding of basal transcription factor TFIIH to the acidic activation domains of VP16 and p53. Mol Cell Biol 14(10):7013-24 PMID: 7935417
- Xiao H, et al. (1994) The upstream activator CTF/NF1 and RNA polymerase II share a common element involved in transcriptional activation. Nucleic Acids Res 22(11):1966-73 PMID: 8029001
- Xiao W, et al. (1994) The MAG1* 3-methyladenine DNA glycosylase gene is closely linked to the SPT15 TATA-binding TFIID gene on chromosome V-R in Saccharomyces cerevisiae. Yeast 10(5):687-91 PMID: 7941752
- Collart MA and Struhl K (1993) CDC39, an essential nuclear protein that negatively regulates transcription and differentially affects the constitutive and inducible HIS3 promoters. EMBO J 12(1):177-86 PMID: 8428577
- DeJong J and Roeder RG (1993) A single cDNA, hTFIIA/alpha, encodes both the p35 and p19 subunits of human TFIIA. Genes Dev 7(11):2220-34 PMID: 8224848
- Ganter B, et al. (1993) Genomic footprinting of the promoter regions of STE2 and STE3 genes in the yeast Saccharomyces cerevisiae. J Mol Biol 234(4):975-87 PMID: 8263944
- Tabuchi H, et al. (1993) Underwinding of DNA on binding of yeast TFIID to the TATA element. Biochem Biophys Res Commun 192(3):1432-8 PMID: 8507207
- Wright AP, et al. (1993) Structure and function of the glucocorticoid receptor. J Steroid Biochem Mol Biol 47(1-6):11-9 PMID: 8274424
- Yoganathan T, et al. (1993) Direct binding of yeast transcription factor (TFIID) to the ribosomal protein L32 (rpL32) TATA-less promoter sequence. FEBS Lett 326(1-3):163-6 PMID: 8325365
- Arndt KM, et al. (1992) Biochemical and genetic characterization of a yeast TFIID mutant that alters transcription in vivo and DNA binding in vitro. Mol Cell Biol 12(5):2372-82 PMID: 1569955
- Buratowski S and Zhou H (1992) Transcription factor IID mutants defective for interaction with transcription factor IIA. Science 255(5048):1130-2 PMID: 1546314
- Conaway JW, et al. (1992) Mechanism of assembly of the RNA polymerase II preinitiation complex. Transcription factors delta and epsilon promote stable binding of the transcription apparatus to the initiator element. J Biol Chem 267(14):10142-8 PMID: 1577784
- Cortes P, et al. (1992) Factors involved in specific transcription by mammalian RNA polymerase II: purification and analysis of transcription factor IIA and identification of transcription factor IIJ. Mol Cell Biol 12(1):413-21 PMID: 1729613
- Coulombe B, et al. (1992) Identification of three mammalian proteins that bind to the yeast TATA box protein TFIID. Gene Expr 2(2):99-110 PMID: 1633441
- Eisenmann DM, et al. (1992) SPT3 interacts with TFIID to allow normal transcription in Saccharomyces cerevisiae. Genes Dev 6(7):1319-31 PMID: 1628834
- Flanagan PM, et al. (1992) Simple derivation of TFIID-dependent RNA polymerase II transcription systems from Schizosaccharomyces pombe and other organisms, and factors required for transcriptional activation. Proc Natl Acad Sci U S A 89(16):7659-63 PMID: 1502179
- Hoopes BC, et al. (1992) Kinetic analysis of yeast TFIID-TATA box complex formation suggests a multi-step pathway. J Biol Chem 267(16):11539-47 PMID: 1597482
- Horikoshi M, et al. (1992) Transcription factor TFIID induces DNA bending upon binding to the TATA element. Proc Natl Acad Sci U S A 89(3):1060-4 PMID: 1736286
- Kelleher RJ, et al. (1992) Yeast and human TFIIDs are interchangeable for the response to acidic transcriptional activators in vitro. Genes Dev 6(2):296-303 PMID: 1310667
- Koleske AJ, et al. (1992) A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID. Cell 69(5):883-94 PMID: 1591782
- Lee DK, et al. (1992) TFIIA induces conformational changes in TFIID via interactions with the basic repeat. Mol Cell Biol 12(11):5189-96 PMID: 1406690
- Schultz MC, et al. (1992) Variants of the TATA-binding protein can distinguish subsets of RNA polymerase I, II, and III promoters. Cell 69(4):697-702 PMID: 1586948
- Sprague KU (1992) New twists in class III transcription. Curr Opin Cell Biol 4(3):475-9 PMID: 1497919
- Strubin M and Struhl K (1992) Yeast and human TFIID with altered DNA-binding specificity for TATA elements. Cell 68(4):721-30 PMID: 1739977
- Yamamoto T, et al. (1992) A bipartite DNA binding domain composed of direct repeats in the TATA box binding factor TFIID. Proc Natl Acad Sci U S A 89(7):2844-8 PMID: 1557391
- Yoganathan T, et al. (1992) Yeast transcription factor IID participates in cell-free transcription of a mammalian ribosomal protein TATA-less promoter. Biochem J 285 ( Pt 3)(Pt 3):721-3 PMID: 1497610
- Burton N, et al. (1991) Expression in Escherichia coli: purification and properties of the yeast general transcription factor TFIID. Protein Expr Purif 2(5-6):432-41 PMID: 1821818
- Conaway JW, et al. (1991) Transcription initiated by RNA polymerase II and transcription factors from liver. Structure and action of transcription factors epsilon and tau. J Biol Chem 266(12):7804-11 PMID: 2019603
- Cormack BP, et al. (1991) Functional differences between yeast and human TFIID are localized to the highly conserved region. Cell 65(2):341-8 PMID: 2015628
- Feaver WJ, et al. (1991) Purification and characterization of yeast RNA polymerase II transcription factor b. J Biol Chem 266(28):19000-5 PMID: 1918015
- Flanagan PM, et al. (1991) A mediator required for activation of RNA polymerase II transcription in vitro. Nature 350(6317):436-8 PMID: 2011193
- Gabrielsen OS and Sentenac A (1991) RNA polymerase III (C) and its transcription factors. Trends Biochem Sci 16(11):412-6 PMID: 1776170
- Gill G and Tjian R (1991) A highly conserved domain of TFIID displays species specificity in vivo. Cell 65(2):333-40 PMID: 2015627
- Inokuchi K and Nakayama A (1991) Lack of a requirement for strict rotational alignment among transcription factor binding sites in yeast. Nucleic Acids Res 19(11):3099-103 PMID: 1905400
- Lee DK, et al. (1991) Interaction of TFIID in the minor groove of the TATA element. Cell 67(6):1241-50 PMID: 1760848
- Margottin F, et al. (1991) Participation of the TATA factor in transcription of the yeast U6 gene by RNA polymerase C. Science 251(4992):424-6 PMID: 1989075
- Meade JC and Stringer JR (1991) PCR amplification of DNA sequences from the transcription factor IID and cation transporting ATPase genes in Pneumocystis carinii. J Protozool 38(6):66S-68S PMID: 1840148
- Meisterernst M and Roeder RG (1991) Family of proteins that interact with TFIID and regulate promoter activity. Cell 67(3):557-67 PMID: 1934060
- Poon D, et al. (1991) The conserved carboxy-terminal domain of Saccharomyces cerevisiae TFIID is sufficient to support normal cell growth. Mol Cell Biol 11(10):4809-21 PMID: 1922021
- Ranish JA and Hahn S (1991) The yeast general transcription factor TFIIA is composed of two polypeptide subunits. J Biol Chem 266(29):19320-7 PMID: 1918049
- Reddy P and Hahn S (1991) Dominant negative mutations in yeast TFIID define a bipartite DNA-binding region. Cell 65(2):349-57 PMID: 2015629
- Starr DB and Hawley DK (1991) TFIID binds in the minor groove of the TATA box. Cell 67(6):1231-40 PMID: 1760847
- Taylor IC, et al. (1991) Facilitated binding of GAL4 and heat shock factor to nucleosomal templates: differential function of DNA-binding domains. Genes Dev 5(7):1285-98 PMID: 2065977
- Usuda Y, et al. (1991) Affinity purification of transcription factor IIA from HeLa cell nuclear extracts. EMBO J 10(8):2305-10 PMID: 2065666
- Workman JL, et al. (1991) Activation domains of stably bound GAL4 derivatives alleviate repression of promoters by nucleosomes. Cell 64(3):533-44 PMID: 1991320
- Zhou QA, et al. (1991) Requirement for acidic amino acid residues immediately N-terminal to the conserved domain of Saccharomyces cerevisiae TFIID. EMBO J 10(7):1843-52 PMID: 2050121
- Brandl CJ and Struhl K (1990) A nucleosome-positioning sequence is required for GCN4 to activate transcription in the absence of a TATA element. Mol Cell Biol 10(8):4256-65 PMID: 2196450
- Fikes JD, et al. (1990) Striking conservation of TFIID in Schizosaccharomyces pombe and Saccharomyces cerevisiae. Nature 346(6281):291-4 PMID: 2197558
- Gasch A, et al. (1990) Arabidopsis thaliana contains two genes for TFIID. Nature 346(6282):390-4 PMID: 2197561
- Gross DS, et al. (1990) Genomic footprinting of the yeast HSP82 promoter reveals marked distortion of the DNA helix and constitutive occupancy of heat shock and TATA elements. J Mol Biol 216(3):611-31 PMID: 2175361
- Hoey T, et al. (1990) Isolation and characterization of the Drosophila gene encoding the TATA box binding protein, TFIID. Cell 61(7):1179-86 PMID: 2194666
- Hoffmann A, et al. (1990) Cloning of the Schizosaccharomyces pombe TFIID gene reveals a strong conservation of functional domains present in Saccharomyces cerevisiae TFIID. Genes Dev 4(7):1141-8 PMID: 2210373
- Horikoshi M, et al. (1990) Analysis of structure-function relationships of yeast TATA box binding factor TFIID. Cell 61(7):1171-8 PMID: 2194665
- Kambadur R, et al. (1990) Cloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription. Proc Natl Acad Sci U S A 87(23):9168-72 PMID: 2251259
- Mahadevan S and Struhl K (1990) Tc, an unusual promoter element required for constitutive transcription of the yeast HIS3 gene. Mol Cell Biol 10(9):4447-55 PMID: 2201891
- Maldonado E, et al. (1990) Factors involved in specific transcription by mammalian RNA polymerase II: role of transcription factors IIA, IID, and IIB during formation of a transcription-competent complex. Mol Cell Biol 10(12):6335-47 PMID: 2247058
- Meisterernst M, et al. (1990) Recombinant yeast TFIID, a general transcription factor, mediates activation by the gene-specific factor USF in a chromatin assembly assay. Proc Natl Acad Sci U S A 87(23):9153-7 PMID: 2251256
- Muhich ML, et al. (1990) cDNA clone encoding Drosophila transcription factor TFIID. Proc Natl Acad Sci U S A 87(23):9148-52 PMID: 2123550
- Singer VL, et al. (1990) A wide variety of DNA sequences can functionally replace a yeast TATA element for transcriptional activation. Genes Dev 4(4):636-45 PMID: 2163345
- Stringer KF, et al. (1990) Direct and selective binding of an acidic transcriptional activation domain to the TATA-box factor TFIID. Nature 345(6278):783-6 PMID: 2193231
- Stucka R and Feldmann H (1990) An element of symmetry in yeast TATA-box binding protein transcription factor IID. Consequence of an ancestral duplication? FEBS Lett 261(2):223-5 PMID: 2178970
- Wobbe CR and Struhl K (1990) Yeast and human TATA-binding proteins have nearly identical DNA sequence requirements for transcription in vitro. Mol Cell Biol 10(8):3859-67 PMID: 2196437
- Buratowski S, et al. (1989) Five intermediate complexes in transcription initiation by RNA polymerase II. Cell 56(4):549-61 PMID: 2917366
- Eisenmann DM, et al. (1989) SPT15, the gene encoding the yeast TATA binding factor TFIID, is required for normal transcription initiation in vivo. Cell 58(6):1183-91 PMID: 2673545
- Hahn S, et al. (1989) Isolation of the gene encoding the yeast TATA binding protein TFIID: a gene identical to the SPT15 suppressor of Ty element insertions. Cell 58(6):1173-81 PMID: 2550146
- Hahn S, et al. (1989) Identification of a yeast protein homologous in function to the mammalian general transcription factor, TFIIA. EMBO J 8(11):3379-82 PMID: 2684641
- Hahn S, et al. (1989) Yeast TATA-binding protein TFIID binds to TATA elements with both consensus and nonconsensus DNA sequences. Proc Natl Acad Sci U S A 86(15):5718-22 PMID: 2569738
- Horikoshi M, et al. (1989) Cloning and structure of a yeast gene encoding a general transcription initiation factor TFIID that binds to the TATA box. Nature 341(6240):299-303 PMID: 2677740
- Horikoshi M, et al. (1989) Purification of a yeast TATA box-binding protein that exhibits human transcription factor IID activity. Proc Natl Acad Sci U S A 86(13):4843-7 PMID: 2662184
- Buratowski S, et al. (1988) Function of a yeast TATA element-binding protein in a mammalian transcription system. Nature 334(6177):37-42 PMID: 3290687
- Horikoshi M, et al. (1988) Mechanism of action of a yeast activator: direct effect of GAL4 derivatives on mammalian TFIID-promoter interactions. Cell 54(5):665-9 PMID: 3044608